Java Programming

Topperworld.in

FILE HANDLING

In Java, with the help of File Class, we can work with files. This File Class is
inside the java.io package. The File class can be used by creating an object of

the class and then specifying the name of the file.

** Why File Handling is Required?

File Handling is an integral part of any programming language as file handling
enables us to store the output of any particular program in a file and allows

us to perform certain operations on it.

In simple words, file handling means reading and writing data to a file.

//
import java.io.File;
class {

(String[] args)

/1

= new File("myfile.txt");

System.out.printin ");

TOPPER
VWORLD

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Java Programming

Output:

File Created!

Streams in Java

¢ InJava, a sequence of data is known as a stream.

e This concept is used to perform 1/O operations on a file.

There are two types of streams :

1.Input Stream:

The Java InputStream class is the superclass of all input streams. The input
stream is used to read data from numerous input devices like the
keyboard, network, etc. InputStream is an abstract class, and because of
this, it is not useful by itself. However, its subclasses are used to read data.

There are several subclasses of the InputStream class, which are as

follows:

AudiolnputStream
ByteArraylnputStream
FileInputStream
FilterinputStream
StringBufferinputStream
ObjectinputStream

// Creating an InputStream

InputStream obj = new FilelnputStream();

Here, an input stream is created using FileInputStream.

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Java Programming

Input Streams

Input Data

Read DV

Disk Files

Write Data Data Output

Output Streams

File Input and Output Stream

2.0utput Stream:

The output stream is used to write data to numerous output devices
like the monitor, file, etc. OutputStream is an abstract superclass that
represents an output stream. OutputStream is an abstract class and
because of this, it is not useful by itself. However, its subclasses are

used to write data.

There are several subclasses of the OutputStream class which are as
follows:

= ByteArrayOutputStream

= FileOutputStream

= StringBufferOutputStream
= ObjectOutputStream

= DataOutputStream

® PrintStream

// Creating an OutputStream

OutputStream obj = new
FileOutputStream();

Here, an output stream is created using FileOutputStream.

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/

Java Programming

A

FileOutput ByteArray FilterOutput PipedOutput ObjectOutput
Stream OutputStream Stream Stream Stream
A
N
DataOutput BufferedOutput PrintStream
Stream Stream
J

Based on the data type, there are types of streams :

1. Byte Stream:

This stream is used to read or write byte data. The byte stream is again
subdivided into two types which are as follows:

e Byte Input Stream: Used to read byte data from different devices.
e Byte Output Stream: Used to write byte data to different devices.

2. Character Stream:

This stream is used to read or write character data. Character stream is again
subdivided into 2 types which are as follows:

e Character Input Stream: Used to read character data from different
devices.

e Character Output Stream: Used to write character data to different
devices.

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Java Programming

Java File Class Methods

The following table depicts several File Class methods:

createNewfFile() Boolean

getAbsolutePath() Returns the absolute pathname of the file.

File operations in Java

The following are the several operations that can be performed on afile in

Java . File Operations in Java

D (02) 03)
» Create a File A

| Get File) Writeto a
. Information / A |
» Read from a File - W,
» Write to a File

| Create aFile

| }
. Read Froma |
» Delete a File N

Now let us study each of the above operations in detail.

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/

Java Programming

1. Create a File

In order to create a file in Java, you can use the createNewFile() method.

If the file is successfully created, it will return a Boolean value true and false
if the file already exists.

Following is a demonstration of how to create a file in Java :

java.io.File;

java.io.IOException;

GFG {
main(String[] args)

{
File Obj = File("myfile.txt");
(Obj.createNewFile()) {
System.out.println("File created: "
+ Obj.getName());

{

System.out.println("File already exists.");

(I0Exception e) {
System.out.println("An error has occurred.");
e.printStackTrace();

Output:

An error has occurred.

2.Read from a File

We will use the Scanner class in order to read() contents from a file.

Following is a demonstration of how to read contents from a file in Java :

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Java Programming

java.io.File;

java.io.FileNotFoundException;

java.util.Scanner;

GFG {
main(String[] args)

{
File Obj = File("myfile.txt");
Scanner Reader = Scanner(0bj);
(Reader.hasNextLine()) {
String data = Reader.nextLine();
System.out.println(data);
}

Reader.close();

(FileNotFoundException e) {
System.out.println("An error has occurred.");
e.printStackTrace();

Output:

An error has occurred.

3. Write to a File:

We use the FileWriter class along with its write() method in order to write
some text to the file.

Following is a demonstration of how to write text to a file in Java :

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/

Java Programming

java.io.FileWriter;

java.io.I0OException;

GFG {
main(String[] args)

{

FileWriter Writer
= FileWriter("myfile.txt");

Writer.write(

"Files in Java are seriously good!!");
Writer.close();
System.out.println("Successfully written.");

(IOException e) {
System.out.println("An error has occurred.");
e.printStackTrace();

Output:

An error has occurred.

4.Delete a File:
We use the delete() method in order to delete a file.

Following is a demonstration of how to delete a file in Java :

java.io.File;

GFG {
main(String[] args)

File Obj = File("myfile.txt");
(Obj.delete()) {

System.out.println("The deleted file is : "
+ Obj.getName());

{
System.out.println(

"Failed in deleting the file.");

TOPPER
WORLD

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Java Programming

Output: i i) i
Failed in deleting the file.

TOPPER ©Topperworld

WORLD

http://topperworld.in/)
http://topperworld.in/

