
Design and Analysis of Algorithm

©Topperworld

 Topperworld.in

• Dijkstra's algorithm is a popular algorithm in computer science and graph

theory, designed to find the shortest path between a starting vertex and

all other vertices in a weighted graph with non-negative edge weights.

• It was conceived by Dutch computer scientist Edsger Dijkstra in 1956 and

is commonly used in applications such as routing and network protocols.

Requirements :

• Dijkstra's Algorithm can only work with graphs that have positive

weights.

• This is because, during the process, the weights of the edges have to be

added to find the shortest path.

• If there is a negative weight in the graph, then the algorithm will not

work properly

• Once a node has been marked as "visited", the current path to that

node is marked as the shortest path to reach that node.

• And negative weights can alter this if the total weight can be

decremented after this step has occurred.

Dijkstra’s algorithm

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

Dijkstra's Algorithm Complexity

• Time Complexity: O(E Log V)

where, E is the number of edges and V is the number of vertices.

• Space Complexity: O(V)

How does Dijkstra’s Algorithm works?

Step 1: Start from Node 0 and mark Node as visited as you can check in below

image visited Node is marked red.

©Topperworld

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

Step 2: Check for adjacent Nodes, Now we have to choices (Either choose

Node1 with distance 2 or either choose Node 2 with distance 6) and choose

Node with minimum distance. In this step Node 1 is Minimum distance

adjacent Node, so marked it as visited and add up the distance.

Distance: Node 0 -> Node 1 = 2

Step 3: Then Move Forward and check for adjacent Node which is Node 3,

so marked it as visited and add up the distance, Now the distance will be:

Distance: Node 0 -> Node 1 -> Node 3 = 2 + 5 = 7

http://topperworld.in/)
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

Step 4: Again we have two choices for adjacent Nodes (Either we can choose

Node 4 with distance 10 or either we can choose Node 5 with distance 15) so

choose Node with minimum distance. In this step Node 4 is Minimum

distance adjacent Node, so marked it as visited and add up the distance.

Distance: Node 0 -> Node 1 -> Node 3 -> Node 4 = 2 + 5 + 10 = 17

Step 5: Again, Move Forward and check for adjacent Node which is Node 6,

so marked it as visited and add up the distance, Now the distance will be:

Distance:

Node 0 -> Node 1 -> Node 3 -> Node 4 -> Node 6 = 2 + 5 + 10 + 2 = 19

©Topperworld

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

So, the Shortest Distance from the Source Vertex is 19 which is optimal one

Algorithm for Dijkstra’s Algorithm:

Implementation of Dijkstra’s Algorithm:

1. Mark the source node with a current distance of 0 and the rest with

infinity.

2. Set the non-visited node with the smallest current distance as the

current node.

3. For each neighbor, N of the current node adds the current distance of

the adjacent node with the weight of the edge connecting 0->1. If it

is smaller than the current distance of Node, set it as the new current

distance of N.

4. Mark the current node 1 as visited.

5. Go to step 2 if there are any nodes are unvisited.

#include <bits/stdc++.h>

using namespace std;

#define INF 0x3f3f3f3f

// iPair ==> Integer Pair

typedef pair<int, int> iPair;

class Graph {

 int V; // No. of vertices

 list<pair<int, int> >* adj;

public:

 Graph(int V); // Constructor

©Topperworld

http://topperworld.in/)
http://topperworld.in/
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

// function to add an edge to graph

 void addEdge(int u, int v, int w);

 // prints shortest path from s

 void shortestPath(int s);

};

// Allocates memory for adjacency list

Graph::Graph(int V)

{

 this->V = V;

 adj = new list<iPair>[V];

}

void Graph::addEdge(int u, int v, int w)

{

 adj[u].push_back(make_pair(v, w));

 adj[v].push_back(make_pair(u, w));

}

// Prints shortest paths from src to all other vertices

void Graph::shortestPath(int src)

{

 priority_queue<iPair, vector<iPair>, greater<iPair> > pq;

 // Create a vector for distances and initialize all

 // distances as infinite (INF)

 vector<int> dist(V, INF);

http://topperworld.in/)
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

// Insert source itself in priority queue and initialize

 // its distance as 0.

 pq.push(make_pair(0, src));

 dist[src] = 0;

 /* Looping till priority queue becomes empty (or all

 distances are not finalized) */

 while (!pq.empty()) {

 int u = pq.top().second;

 pq.pop();

 // 'i' is used to get all adjacent vertices of a

 // vertex

 list<pair<int, int> >::iterator i;

 for (i = adj[u].begin(); i != adj[u].end(); ++i) {

 // Get vertex label and weight of current

 // adjacent of u.

 int v = (*i).first;

 int weight = (*i).second;

 // If there is shorted path to v through u.

 if (dist[v] > dist[u] + weight) {

 // Updating distance of v

 dist[v] = dist[u] + weight;

 pq.push(make_pair(dist[v], v));

 }

 }

 }

http://topperworld.in/)
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

// Print shortest distances stored in dist[]

 printf("Vertex Distance from Source\n");

 for (int i = 0; i < V; ++i)

 printf("%d \t\t %d\n", i, dist[i]);

}

// Driver program to test methods of graph class

int main()

{

 // create the graph given in above figure

 int V = 7;

 Graph g(V);

 // making above shown graph

 g.addEdge(0, 1, 2);

 g.addEdge(0, 2, 6);

 g.addEdge(1, 3, 5);

 g.addEdge(2, 3, 8);

 g.addEdge(3, 4, 10);

 g.addEdge(3, 5, 15);

 g.addEdge(4, 6, 2);

 g.addEdge(5, 6, 6);

 g.shortestPath(0);

 return 0;

}

http://topperworld.in/)
http://topperworld.in/

Design and Analysis of Algorithm

©Topperworld

Application of Dijkstra’s Algorithm:

• It is used in finding Shortest Path.

• It is used in geographical Maps.

• To find locations of Map which refers to vertices of graph.

• Distance between the location refers to edges.

• It is used in IP routing to find Open shortest Path First.

• It is used in the telephone network.

http://topperworld.in/)
http://topperworld.in/

