Roll No. Printed Pages: 3 36108

BT-6/M-18

DIGITAL SIGNAL PROCESSING

Paper-ECE-302N

Time allowed: 3 hours]

Maximum marks: 75

Note: Attempt any five questions. Selecting at least one question from each unit.

Unit-I

- 1. (a) State and prove the correlation property of Z-transform.7
 - (b) Determine the inverse z-transform of the sequences system

function
$$H(z) = \frac{1}{(z-1)(z-0.8)}$$

For the following ROC, determine the stability of the system:

8

- (i) |z| > 1
- (ii) |z| < 0.8
- (iii) 0.8 < |z| < 1
- 2. (a) State and prove that a causal LTI-system is BIBO stable if and only if its impulse response is absolutely summable.

 Assume system is initially relaxed.

 7
 - (b) Explain the Chirp Z-transform algorithm for linear filtering approach.

Unit-II

3. (a) Given $x(n) = \{1, -1, -1, -1, 1, 1, 1, -1\}$ and N = 8, then find X(k) using Radix -2 DIF FFT algorithm.

36108

[Turn over

- (b) Give the comparison between FIR and IIR systems. 7
- 4. (a) Explain the lattice structure for a FIR- system.
 - (b) Develop the direct form-I and form-II for the IIR system given by $y(n) = 2b \cos(w_o) y(n-1) b^2 y(n-2) + x(n) b \cos(w_o) x(n-1)$ 7

8

Unit-III

- 5. (a) Define window function. Derive an expression for frequency response of a rectangular window function.
 - (b) Find the magnitude and phase response of the linear phase FIR filter, when its impulse response is symmetric.
- 6. (a) A low pass filter is to be designed with the following desired frequency response

$$H_d(e^{jw}) = e^{-j2w}; -\pi/4 \le w \le \pi/4$$

0; otherwise

Determine the filter coefficients $h_d(n)$ if the window function is defined as

$$w(n) = 1 ; 0 \le n \le 4$$

0; otherwise

Also, determine the frequency response H (e^{iw}) of the designature.

(b) Explain the Gibbs phenomenon and its consequences. 5

Unit-IV

7. (a) Convert the analog filter into a digital filter whose system function is given by

$$H_a(s) = \frac{1}{(s+2)(s+1)}$$

Assume T = 1.0 Second.

Then determine corresponding H(z) using impulse invariance Transformation method and sampling time period T=0.2 second.

- (b) Explain the Bilinear transformation method of IIR filter design.9
- 8. (a) Design a digital Butterworth filter that satisfies the following constraint using impulse invariant transformation.

$$0.5 \le |H(e^{jw})| \le 1$$
 ; $0 \le w \le \pi/2$
 $|H(e^{jw})| \le 0.2$; $3\pi/4 \le w \le \pi$

(b) . Give the comparison between the impulse invariance and bilinear transformation.

12

