

Design and Analysis

of Algorithms
B.Tech (CSE)

NOTES

 Prepared By-

https://topperworld.in/

Topperworld.in

UNIT-1

Design and Analysis of Algorithms:

An algorithm is a set of steps of operations to solve a

problem performing calculation, data processing, and

automated reasoning tasks. An algorithm is an efficient

method that can be expressed within finite amount of

time and space.

An algorithm is the best way to represent the solution of

a particular problem in a very simple and efficient way.

If we have an algorithm for a specific problem, then we

can implement it in any programming language,

meaning that the algorithm is independent from any

programming languages.

 INTRODUCTION

Review:- Elementary Data Structures, Algorithms and its complexity(Time and Space), Analysing Algorithms,

Asymptotic Notations, Priority Queue, Quick Sort.

Recurrence relation:- Methods for solving recurrence(Substitution , Recursion tree, Master theorem), Strassen

multiplication.

Topperworld.in

https://topperworld.in/
https://topperworld.in/

Topperworld.in

What is Algorithm

He word Algorithm means “a process or set of rules to

be followed in calculations or other problem-solving

operations”. Therefore Algorithm refers to a set of

rules/instructions that step-by-step define how a work is

to be executed upon in order to get the expected results.

Why study Algorithm ?

The importance of algorithms is very high in today's

world but in reality, what we focus on is the result, be it

ios apps, android apps, or any other application. The

reason we have these resultant applications is the

Algorithm. If programming a building, then the

algorithm is the pillar programming is standing on, and

without pillars, there is no building. But why do we go

for algorithms instead of going for the application

directly? Let's get that from an example. Let's suppose

we are building something, and we have the result in

mind. We are not an expert, but still, we bring all the

necessary items and design that thing. It also looks like

https://topperworld.in/

Topperworld.in

what we had in mind. But it does not fulfill the purpose

we built it for. Do we have any use of it? This is what's

an algorithm for a program because it provides meaning

to the program. There is much reason to study

algorithms as it is used in almost every digital

application we use today. To showcase the value

algorithms have, here we have some of its applications.

Properties of Algorithm

All Algorithms must satisfy the following criteria -

1) Input

There are more quantities that are extremely supplied.

2) Output

At least one quantity is produced.

3) Definiteness

Each instruction of the algorithm should be clear and

unambiguous.

 4) Finiteness

The process should be terminated after a finite number

of steps.

5) Effectiveness

Every instruction must be basic enough to be

carried out theoretically or by using paper and

pencil

https://topperworld.in/

Topperworld.in

For example,suppose you are cooking a recipe and you chop

vegetables which are not be used in the recipe then it is a waste of

time.

6)Independent

An algorithm should have step-by-step directions, which

should be independent of any programming code. It

should be such that it could be run on any of the

programming languages.

What are the Characteristics of an Algorithm

i) Clear and Unambiguous: Algorithm should be

clear and unambiguous. Each of its steps should

be clear in all aspects and must lead to only one

meaning.

https://topperworld.in/

Topperworld.in

ii) Well-Defined Inputs: If an algorithm says to take

inputs, it should be well-defined inputs.

iii) Well-Defined Outputs: The algorithm must

clearly define what output will be yielded and it

should be well-defined as well.

iv) Finite-ness: The algorithm must be finite, i.e. it

should not end up in an infinite loops or similar.

v) Feasible: The algorithm must be simple, generic

and practical, such that it can be executed upon

with the available resources. It must not contain

some future technology, or anything.

vi) Language Independent: The Algorithm designed

must be language-independent, i.e. it must be just

plain instructions that can be implemented in any

language, and yet the output will be same, as

expected.

https://topperworld.in/

Topperworld.in

Advantages of Algorithms:

i)It is easy to understand.

ii) Algorithm is a step-wise representation of a solution

to a given problem.

iii)In Algorithm the problem is broken down into

smaller pieces or steps hence, it is easier for the

programmer to convert it into an actual program.

Disadvantages of Algorithms:

https://topperworld.in/

Topperworld.in

i)Writing an algorithm takes a long time so it is time-

consuming.

ii)Branching and Looping statements are difficult to

show in Algorithms.

Performance Analysis of Algorithm

There are two types are:

i) Time Complexity

ii) Space Complexity

Time Complexity

Time complexity is the amount of time taken

by an algorithm to run, as a function of the

length of the input. It measures the time taken

to execute each statement of code in an

algorithm. Upskilling with the help of

an introduction to algorithms free course will

help you understand time complexity clearly.

.

https://topperworld.in/
https://www.mygreatlearning.com/academy/learn-for-free/courses/introduction-to-algorithms?gl_blog_id=22959

Topperworld.in

.

What Is Space Complexity?

When an algorithm is run on a computer, it necessitates

a certain amount of memory space. The amount of

memory used by a program to execute it is represented

by its space complexity. Because a program requires

memory to store input data and temporal values while

running, the space complexity is auxiliary and input

space.

https://topperworld.in/

Topperworld.in

Analyzing Algorithm

To analyze a programming code or algorithm, we must

notice that each instruction affects the overall

performance of the algorithm and therefore, each

instruction must be analyzed separately to analyze

overall performance. However, there are some algorithm

control structures which are present in each

programming code and have a specific asymptotic

analysis.

https://topperworld.in/

Topperworld.in

Some Algorithm Control Structures are:

1. Sequencing

2. If-then-else

3. for loop

4. While loop

1. Sequencing:

Suppose our algorithm consists of two parts A and B. A

takes time tA and B takes time tB for computation. The

total computation "tA + tB" is according to the sequence

rule. According to maximum rule, this computation time

is (max (tA,tB)).

Example:

Suppose tA =O (n) and tB = θ (n2).

Then, the total computation time can be calculated as

Computation Time = tA + tB

 = (max (tA,tB)

 = (max (O (n), θ (n2)) = θ (n2)

https://topperworld.in/

Topperworld.in

2. If-then-else:

The total time computation is according to the condition

rule-"if-then-else." According to the maximum rule, this

computation time is max (tA,tB).

Example:

Suppose tA = O (n2) and tB = θ (n2)

Calculate the total computation time for the following:

https://topperworld.in/

Topperworld.in

Total Computation = (max (tA,tB))

 = max (O (n2), θ (n2) = θ (n2)

3. For loop:

The general format of for loop is:

1. For (initialization; condition; updation)

2.
3. Statement(s);

https://topperworld.in/
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure

Topperworld.in

Complexity of for loop:

The outer loop executes N times. Every time the outer

loop executes, the inner loop executes M times. As a

result, the statements in the inner loop execute a total

of N * M times. Thus, the total complexity for the two

loops is O (N2)

Consider the following loop:

1. for i ← 1 to n

2. {

3. P (i)

4. }

If the computation time ti for (PI) various as a function

of "i", then the total computation time for the loop is

given not by a multiplication but by a sum i.e.

1. For i ← 1 to n

2. {

3. P (i)

4. }

Takes

https://topperworld.in/
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure

Topperworld.in

If the algorithms consist of nested "for" loops, then the

total computation time is

For i ← 1 to n

 {

 For j ← 1 to n

 {

 P (ij)

 }

 }

Example:

Consider the following "for" loop, Calculate the total

computation time for the following:

1. For i ← 2 to n-1

2. {

3. For j ← 3 to i

4. {

5. Sum ← Sum+A [i] [j]

6. }
7. }

Solution:

https://topperworld.in/
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure

Topperworld.in

The total Computation time is:

 While loop:

The Simple technique for analyzing the loop is to

determine the function of variable involved whose value

decreases each time around. Secondly, for terminating

the loop, it is necessary that value must be a positive

integer. By keeping track of how many times the value

of function decreases, one can obtain the number of

repetition of the loop. The other approach for analyzing

"while" loop is to treat them as recursive algorithms.

Algorithm:

1. 1. [Initialize] Set k: =1, LOC: =1 and MAX: = DA

TA [1]

2. 2. Repeat steps 3 and 4 while K≤N

3. 3. if MAX<DATA [k],then:

4. Set LOC: = K and MAX: = DATA [k]

5. 4. Set k: = k+1

6. [End of step 2 loop]

7. 5. Write: LOC, MAX

8. 6. EXIT

https://topperworld.in/

Topperworld.in

Example:

The running time of algorithm array Max of computing

the maximum element in an array of n integer is O (n).

Solution:

1. array Max (A, n)

2. 1. Current max ← A [0]

3. 2. For i ← 1 to n-1

4. 3. do if current max < A [i]

5. 4. then current max ← A [i]

6. 5. return current max.

The number of primitive operation t (n) executed by this

algorithm is at least.

1. 2 + 1 + n +4 (n-1) + 1=5n

2. 2 + 1 + n + 6 (n-1) + 1=7n-2

https://topperworld.in/
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure
https://www.javatpoint.com/daa-analyzing-algorithm-control-structure

Topperworld.in

The best case T(n) =5n occurs when A [0] is the

maximum element. The worst case T(n) = 7n-2 occurs

when element are sorted in increasing order.

We may, therefore, apply the big-Oh definition with c=7

and n0=1 and conclude the running time of this is O (n).

Asymptotic Notation

Asymptotic Notation is used to describe the running

time of an algorithm - how much time an algorithm

takes with a given input, n.

 Asymptotic Notation is a

way of comparing function that ignores constant factors

and small input sizes. Three notations are used to

calculate the running time complexity of an algorithm:

There are three different notations: big O, big Theta

(Θ), and big Omega (Ω).

Why is Asymptotic Notation Important?

1. They give simple characteristics of an algorithm's

efficiency.

2. They allow the comparisons of the performances of

various algorithms.

 1) Big-O Notation

The Big-O notation describes the worst-case running

time of a program. We compute the Big-O of an

algorithm by counting how many iterations an

https://topperworld.in/

Topperworld.in

algorithm will take in the worst-case scenario with an

input of N. We typically consult the Big-O because we

must always plan for the worst case. For example,

O(log n) describes the Big-O of a binary search

algorithm.

1. f (n) ⩽ k.g (n)f(n)⩽k.g(n) for n>n0n>n0 in all case

For Example:

1. 1. 3n+2=O(n) as 3n+2≤4n for all n≥2

2. 2. 3n+3=O(n) as 3n+3≤4n for all n≥3

Hence, the complexity of f(n) can be represented as O (g

(n))

2) Big-Ω Notation

Big-Ω (Omega) describes the best running time of a

program. We compute the big-Ω by counting how many

iterations an algorithm will take in the best-case

https://topperworld.in/

Topperworld.in

scenario based on an input of N. For example, a Bubble

Sort algorithm has a running time of Ω(N) because in

the best case scenario the list is already sorted, and the

bubble sort will terminate after the first iteration.

F (n) ≥ k* g (n) for all n, n≥ n0

For Example:

 f (n) =8n2+2n-3≥8n2-3

 =7n2+(n2-3)≥7n2 (g(n))

Thus, k1=7

Hence, the complexity of f (n) can be represented as Ω

(g (n))

3. Theta (θ) Notation: The function f (n) = θ (g (n))

[read as "f is the theta of g of n"] if and only if there exists

positive constant k1, k2 and k0 such that

 k1 * g (n) ≤ f(n)≤ k2 g(n)for all n, n≥ n0

https://topperworld.in/

Topperworld.in

3n+2= θ (n) as 3n+2≥3n and 3n+2≤ 4n, for n

 k1=3,k2=4, and n0=2

Hence, the complexity of f (n) can be represented as θ

(g(n)).

Recurrence Relation

A recurrence is an equation or inequality that describes a

function in terms of its values on smaller inputs. To solve

a Recurrence Relation means to obtain a function defined

on the natural numbers that satisfy the recurrence.

For Example, the Worst Case Running Time T(n) of the

MERGE SORT Procedures is described by the

recurrence.

T (n) = θ (1) if n=1

 2T + θ (n) if n>1

https://topperworld.in/

Topperworld.in

There are four methods for solving Recurrence:

1. Substitution Method

2. Iteration Method

3. Recursion Tree Method

4. Master Method

1. Substitution Method:

The Substitution Method Consists of two main steps:

1. Guess the Solution.

2. Use the mathematical induction to find the

boundary condition and shows that the guess is

correct.

For Example1 Solve the equation by Substitution

Method.

 T (n) = T + n

We have to show that it is asymptotically bound by O

(log n).

https://topperworld.in/
https://www.javatpoint.com/daa-recurrence-relation#substitution-method
https://www.javatpoint.com/daa-recurrence-relation#substitution-method
https://www.javatpoint.com/daa-recurrence-relation#iteration-method
https://www.javatpoint.com/daa-recurrence-relation#iteration-method
https://www.javatpoint.com/daa-recursion-tree-method
https://www.javatpoint.com/daa-recursion-tree-method
https://www.javatpoint.com/daa-master-method

Topperworld.in

Solution:

For T (n) = O (log n)

We have to show that for some constant c

1. T (n) ≤c logn.

Put this in given Recurrence Equation.

 T (n) ≤c log + 1

 ≤c log + 1 = c logn-clog2 2+1

 ≤c logn for c≥1

Thus T (n) =O logn.

Example2. Consider the Recurrence

T (n) = 2T + n n>1

Find an Asymptotic bound on T.

Solution:

https://topperworld.in/
https://www.javatpoint.com/daa-recurrence-relation
https://www.javatpoint.com/daa-recurrence-relation
https://www.javatpoint.com/daa-recurrence-relation
https://www.javatpoint.com/daa-recurrence-relation
https://www.javatpoint.com/daa-recurrence-relation
https://www.javatpoint.com/daa-recurrence-relation

Topperworld.in

2. Iteration Methods

It means to expand the recurrence and express it as a

summation of terms of n and initial condition.

Example1: Consider the Recurrence

1. T (n) = 1 if n=1

2. = 2T (n-1) if n>1

https://topperworld.in/

Topperworld.in

3) Recurrence Tree Method: In this method,

we draw a recurrence tree and calculate the time

taken by every level of tree. Finally, we sum the

work done at all levels. To draw the recurrence

tree, we start from the given recurrence and keep

drawing till we find a pattern among levels. The

pattern is typically a arithmetic or geometric

series.

1. In general, we consider the second term in recurrence

as root.

2. It is useful when the divide & Conquer algorithm is

used.

https://topperworld.in/

Topperworld.in

3. It is sometimes difficult to come up with a good guess.

In Recursion tree, each root and child represents the cost

of a single subproblem.

For example consider the recurrence relation

Consider T (n) = 2T + n2

We have to obtain the asymptotic bound using recursion

tree method.

Solution: The Recursion tree for the above recurrence is

https://topperworld.in/

Topperworld.in

Example 3: Consider the following recurrence

Obtain the asymptotic bound using recursion tree

method.

Solution: The given Recurrence has the following

recursion tree

https://topperworld.in/

Topperworld.in

When we add the values across the levels of the recursion

trees, we get a value of n for every level. The longest path

from the root to leaf is

https://topperworld.in/

Topperworld.in

4) Master Method

The Master Method is used for solving the following

types of recurrence

T (n) = a T + f (n) with a≥1 and b≥1 be constant & f(n)

be a function and can be interpreted as

Let T (n) is defined on non-negative integers by the

recurrence.

T (n) = a T + f (n)

In the function to the analysis of a recursive algorithm,

the constants and function take on the following

significance:

o n is the size of the problem.

o a is the number of subproblems in the recursion.

o n/b is the size of each subproblem. (Here it is

assumed that all subproblems are essentially the

same size.)

o f (n) is the sum of the work done outside the

recursive calls, which includes the sum of dividing

the problem and the sum of combining the solutions

to the subproblems.

https://topperworld.in/

Topperworld.in

o It is not possible always bound the function

according to the requirement, so we make three

cases which will tell us what kind of bound we can

apply on the function

Priority queue

A priority queue is a special type of queue in which each element is associated

with a priority value. And, elements are served on the basis of their priority. That

is, higher priority elements are served first.

However, if elements with the same priority occur, they are served according to

their order in the queue.

Assigning Priority Value

Generally, the value of the element itself is considered for assigning the priority.

For example,

The element with the highest value is considered the highest priority element.

However, in other cases, we can assume the element with the lowest value as the

highest priority element.

We can also set priorities according to our needs.

https://topperworld.in/

Topperworld.in

Removing highest Priority Element

Implementation of Priority Queue

Priority queue can be implemented using an array, a linked list, a heap data

structure, or a binary search tree. Among these data structures, heap data structure

provides an efficient implementation of priority queues.

Hence, we will be using the heap data structure to implement the priority queue in

this tutorial. A max-heap is implement is in the following operations. If you want

to learn more about it, please visit max-heap and mean-heap.

A comparative analysis of different implementations of priority queue is given

below.

https://topperworld.in/
https://www.programiz.com/dsa/heap-sort#heap

Topperworld.in

Operations peek insert delete

Linked List O(1) O(n) O(1)

Binary Heap O(1) O(log n) O(log n)

Binary Search Tree O(1) O(log n) O(log n)

Priority Queue Operations

Basic operations of a priority queue are inserting, removing, and peeking elements.

. Inserting an Element into the Priority Queue

Inserting an element into a priority queue (max-heap) is done by the following

steps.

• Insert the new element at the end of the tree.

Heapify the tree.

https://topperworld.in/
https://www.programiz.com/dsa/heap-data-structure#heapify

Topperworld.in

Heapify after insertion

Algorithm for insertion of an element into priority queue (max-heap)

If there is no node,

 create a newNode.

else (a node is already present)

 insert the newNode at the end (last node from left to right.)

heapify the array

For Min Heap, the above algorithm is modified so that parentNode is always smaller

than newNode.

2. Deleting an Element from the Priority Queue

Deleting an element from a priority queue (max-heap) is done as follows:

https://topperworld.in/

Topperworld.in

• Select the element to be deleted.

Select the element to be deleted

• Swap it with the last element. Swap

with the last leaf node element

• Remove the last element. Remove

the last element leaf

https://topperworld.in/

Topperworld.in

• Heapify the tree. Heapify the

priority queue

Algorithm for deletion of an element in the priority queue (max-heap)

If nodeToBeDeleted is the leafNode

 remove the node

Else swap nodeToBeDeleted with the lastLeafNode

 remove noteToBeDeleted

heapify the array

For Min Heap, the above algorithm is modified so that the both childNodes are

smaller than currentNode.

3. Peeking from the Priority Queue (Find max/min)

Peek operation returns the maximum element from Max Heap or minimum

element from Min Heap without deleting the node.

For both Max heap and Min Heap

https://topperworld.in/

Topperworld.in

return rootNode

4. Extract-Max/Min from the Priority Queue

Extract-Max returns the node with maximum value after removing it from a Max

Heap whereas Extract-Min returns the node with minimum value after removing it

from Min Heap.

Priority Queue Implementations in Python, Java, C, and

C++

Python

Java

C

C++

Priority Queue implementation in Python

Function to heapify the tree

def heapify(arr, n, i):

 # Find the largest among root, left child and right child

 largest = i

 l = 2 * i + 1

 r = 2 * i + 2

 if l < n and arr[i] < arr[l]:

 largest = l

 if r < n and arr[largest] < arr[r]:

 largest = r

https://topperworld.in/
https://www.programiz.com/dsa/priority-queue#python-code
https://www.programiz.com/dsa/priority-queue#java-code
https://www.programiz.com/dsa/priority-queue#c-code
https://www.programiz.com/dsa/priority-queue#cpp-code

Topperworld.in

 # Swap and continue heapifying if root is not largest

 if largest != i:

 arr[i], arr[largest] = arr[largest], arr[i]

 heapify(arr, n, largest)

Function to insert an element into the tree

def insert(array, newNum):

 size = len(array)

 if size == 0:

 array.append(newNum)

 else:

 array.append(newNum)

 for i in range((size // 2) - 1, -1, -1):

 heapify(array, size, i)

Function to delete an element from the tree

def deleteNode(array, num):

 size = len(array)

 i = 0

 for i in range(0, size):

 if num == array[i]:

 break

 array[i], array[size - 1] = array[size - 1], array[i]

 array.remove(size - 1)

 for i in range((len(array) // 2) - 1, -1, -1):

 heapify(array, len(array), i)

arr = []

insert(arr, 3)

insert(arr, 4)

insert(arr, 9)

insert(arr, 5)

insert(arr, 2)

print ("Max-Heap array: " + str(arr))

deleteNode(arr, 4)

print("After deleting an element: " + str(arr))

https://topperworld.in/

Topperworld.in

Heap Sort

Binary Heap:

Binary Heap is an array object can be viewed as

Complete Binary Tree. Each node of the Binary Tree

corresponds to an element in an array.

1. Length [A],number of elements in array

2. Heap-Size[A], number of elements in a heap stored

within array A.

The root of tree A [1] and gives index 'i' of a node that

indices of its parents, left child, and the right child can be

computed.

1. PARENT (i)

2. Return floor (i/2)

3. LEFT (i)

4. Return 2i

5. RIGHT (i)

6. Return 2i+1

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

Representation of an array of the above figure is given below:

The index of 20 is 1

48.3M

953

Exception Handling in Java - Javatpoint

Next

Stay

To find the index of the left child, we calculate 1*2=2

This takes us (correctly) to the 14.

Now, we go right, so we calculate 2*2+1=5

https://topperworld.in/

Topperworld.in

This takes us (again, correctly) to the 6.

Now, 4's index is 7, we want to go to the parent, so we

calculate 7/2 =3 which takes us to the 17.

Heap Property:

A binary heap can be classified as Max Heap or Min

Heap

1. Max Heap: In a Binary Heap, for every node I other

than the root, the value of the node is greater than or

equal to the value of its highest child

1. A [PARENT (i) ≥A[i]

Thus, the highest element in a heap is stored at the root.

Following is an example of MAX-HEAP

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

2. MIN-HEAP: In MIN-HEAP, the value of the node is

lesser than or equal to the value of its lowest child.

1. A [PARENT (i) ≤A[i]

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

Heapify Method:

1. Maintaining the Heap Property: Heapify is a

procedure for manipulating heap Data Structure. It is

given an array A and index I into the array. The subtree

rooted at the children of A [i] are heap but node A [i]

itself may probably violate the heap property i.e. A [i] <

A [2i] or A [2i+1]. The procedure 'Heapify' manipulates

the tree rooted as A [i] so it becomes a heap.

MAX-HEAPIFY (A, i)

 1. l ← left [i]

 2. r ← right [i]

 3. if l≤ heap-size [A] and A[l] > A [i]

 4. then largest ← l

 5. Else largest ← i

 6. If r≤ heap-size [A] and A [r] > A[largest]

 7. Then largest ← r

 8. If largest ≠ i

 9. Then exchange A [i] A [largest]

 10. MAX-HEAPIFY (A, largest)

Analysis:

The maximum levels an element could move up are Θ

(log n) levels. At each level, we do simple comparison

which O (1). The total time for heapify is thus O (log n).

Building a Heap:

BUILDHEAP (array A, int n)

https://topperworld.in/

Topperworld.in

 1 for i ← n/2 down to 1

 2 do

 3 HEAPIFY (A, i, n)

HEAP-SORT ALGORITHM:

HEAP-SORT (A)

 1. BUILD-MAX-HEAP (A)

 2. For I ← length[A] down to Z

 3. Do exchange A [1] ←→ A [i]

 4. Heap-size [A] ← heap-size [A]-1

 5. MAX-HEAPIFY (A,1)

Analysis: Build max-heap takes O (n) running time. The

Heap Sort algorithm makes a call to 'Build Max-Heap'

which we take O (n) time & each of the (n-1) calls to

Max-heap to fix up a new heap. We know 'Max-Heapify'

takes time O (log n)

The total running time of Heap-Sort is O (n log n).

Example: Illustrate the Operation of BUILD-MAX-

HEAP on the array.

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

1. A = (5, 3, 17, 10, 84, 19, 6, 22, 9)

Solution: Originally:

1. Heap-Size (A) =9, so first we call MAX-

HEAPIFY (A, 4)

2. And I = 4.5= 4 to 1

1. After MAX-HEAPIFY (A, 4) and i=4

2. L ← 8, r ← 9

3. l≤ heap-size[A] and A [l] >A [i]

4. 8 ≤9 and 22>10

5. Then Largest ← 8

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

6. If r≤ heap-size [A] and A [r] > A [largest]

7. 9≤9 and 9>22

8. If largest (8) ≠4

9. Then exchange A [4] ←→ A [8]

10. MAX-HEAPIFY (A, 8)

1. After MAX-HEAPIFY (A, 3) and i=3

2. l← 6, r ← 7

3. l≤ heap-size[A] and A [l] >A [i]

4. 6≤ 9 and 19>17

5. Largest ← 6

6. If r≤ heap-size [A] and A [r] > A [largest]

7. 7≤9 and 6>19

8. If largest (6) ≠3

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

9. Then Exchange A [3] ←→ A [6]

10. MAX-HEAPIFY (A, 6)

1. After MAX-HEAPIFY (A, 2) and i=2

2. l ← 4, r ← 5

3. l≤ heap-size[A] and A [l] >A [i]

4. 4≤9 and 22>3

5. Largest ← 4

6. If r≤ heap-size [A] and A [r] > A [largest]

7. 5≤9 and 84>22

8. Largest ← 5

9. If largest (4) ≠2

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

10. Then Exchange A [2] ←→ A [5]

11. MAX-HEAPIFY (A, 5)

1. After MAX-HEAPIFY (A, 1) and i=1

2. l ← 2, r ← 3

3. l≤ heap-size[A] and A [l] >A [i]

4. 2≤9 and 84>5

5. Largest ← 2

6. If r≤ heap-size [A] and A [r] > A [largest]

7. 3≤9 and 19<84

8. If largest (2) ≠1

9. Then Exchange A [1] ←→ A [2]

10. MAX-HEAPIFY (A, 2)

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

Priority Queue:

As with heaps, priority queues appear in two forms: max-

priority queue and min-priority queue.

A priority queue is a data structure for maintaining a set

S of elements, each with a combined value called a key.

A max-priority queue guides the following operations:

INSERT(S, x): inserts the element x into the set S,

which is proportionate to the operation S=S∪[x].

MAXIMUM (S) returns the element of S with the

highest key.

EXTRACT-MAX (S) removes and returns the element

of S with the highest key.

https://topperworld.in/

Topperworld.in

INCREASE-KEY(S, x, k) increases the value of

element x's key to the new value k, which is considered

to be at least as large as x's current key value.

Let us discuss how to implement the operations of a max-

priority queue. The procedure HEAP-MAXIMUM

consider the MAXIMUM operation in θ (1) time.

HEAP-MAXIMUM (A)

1. return A [1]

The procedure HEAP-EXTRACT-MAX implements the

EXTRACT-MAX operation. It is similar to the for loop

of Heap-Sort procedure.

HEAP-EXTRACT-MAX (A)

 1 if A. heap-size < 1

 2 error "heap underflow"

 3 max ← A [1]

 4 A [1] ← A [heap-size [A]]

 5 heap-size [A] ← heap-size [A]-1

 6 MAX-HEAPIFY (A, 1)

 7 return max

The procedure HEAP-INCREASE-KEY implements the

INCREASE-KEY operation. An index i into the array

identify the priority-queue element whose key we wish

to increase.

HEAP-INCREASE-KEY.A, i, key)

https://topperworld.in/

Topperworld.in

 1 if key < A[i]

 2 errors "new key is smaller than current key"

 3 A[i] = key

 4 while i>1 and A [Parent (i)] < A[i]

 5 exchange A [i] with A [Parent (i)]

 6 i =Parent [i]

The running time of HEAP-INCREASE-KEY on an n-

element heap is O (log n) since the path traced from the

node updated in line 3 to the root has length O (log n).

The procedure MAX-HEAP-INSERT implements the

INSERT operation. It takes as an input the key of the new

item to be inserted into max-heap A. The procedure first

expands the max-heap by calculating to the tree a new

leaf whose key is - ∞. Then it calls HEAP-INCREASE-

KEY to set the key of this new node to its right value and

maintain the max-heap property

MAX-HEAP-INSERT (A, key)

 1 A. heap-size = A. heap-size + 1

 2 A [A. heap-size] = - ∞

 3 HEAP-INCREASE-KEY (A, A. heap-size, key)

The running time of MAX-HEAP-INSERT on an n-

element heap is O (log n).

Example: Illustrate the operation of HEAP-EXTRACT-

MAX on the heap

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

1. A= (15,13,9,5,12,8,7,4,0,6,2,1)

Fig: Operation of HEAP-INCREASE-KEY

Fig: (a)

In this figure, that max-heap with a node whose index is

'i' heavily shaded

https://topperworld.in/
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort
https://www.javatpoint.com/daa-binary-heap-sort

Topperworld.in

Fig: (b)

In this Figure, this node has its key increased to 15.

Fig: (c)

https://topperworld.in/

Topperworld.in

After one iteration of the while loop of lines 4-6, the node

and its parent have exchanged keys, and the index i

moves up to the parent.

Fig: (d)

The max-heap after one more iteration of the while loops,

the A [PARENT (i) ≥A (i)] the max-heap property now

holds and the procedure terminates.

Heap-Delete:

Heap-DELETE (A, i) is the procedure, which deletes the

item in node 'i' from heap A, HEAP-DELETE runs in O

(log n) time for n-element max heap.

https://topperworld.in/

Topperworld.in

HEAP-DELETE (A, i)

 1. A [i] ← A [heap-size [A]]

 2. Heap-size [A] ← heap-size [A]-1

 3. MAX-HEAPIFY (A, i)

Quick sort

It is an algorithm of Divide & Conquer type.

Divide: Rearrange the elements and split arrays into two

sub-arrays and an element in between search that each

element in left sub array is less than or equal to the

average element and each element in the right sub- array

is larger than the middle element.

Conquer: Recursively, sort two sub arrays.

Combine: Combine the already sorted array.

• Quick Sort is a famous sorting algorithm.

• It sorts the given data items in ascending order.

• It uses the idea of divide and conquer approach.

• It follows a recursive algorithm

Algorithm:

1. QUICKSORT (array A, int m, int n)

2. 1 if (n > m)

3. 2 then

4. 3 i ← a random index from [m,n]

https://topperworld.in/

Topperworld.in

5. 4 swap A [i] with A[m]

6. 5 o ← PARTITION (A, m, n)

7. 6 QUICKSORT (A, m, o - 1)

8. 7 QUICKSORT (A, o + 1, n)

Partition Algorithm:

Partition algorithm rearranges the sub arrays in a place.

1. PARTITION (array A, int m, int n)

2. 1 x ← A[m]

3. 2 o ← m

4. 3 for p ← m + 1 to n

5. 4 do if (A[p] < x)

6. 5 then o ← o + 1

7. 6 swap A[o] with A[p]

8. 7 swap A[m] with A[o]

9. 8 return o

Figure: shows the execution trace partition algorithm

https://topperworld.in/

Topperworld.in

Consider the following array has to be sorted in

ascending order using quick sort algorithm-

Quick Sort Algorithm works in the following steps-

https://topperworld.in/

Topperworld.in

Step-01:

Initially-

• Left and Loc (pivot) points to the first element of

the array.

• Right points to the last element of the array.

So to begin with, we set loc = 0, left = 0 and right = 5

as-

Step-02:

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] < a[right], so algorithm moves right one

position towards left as-

https://topperworld.in/

Topperworld.in

Now, loc = 0, left = 0 and right = 4.

Step-03:

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc] and

a[right] and loc points at right as-

https://topperworld.in/

Topperworld.in

Now, loc = 4, left = 0 and right = 4.

Step-04:

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] > a[left], so algorithm moves left one position

towards right as-

Now, loc = 4, left = 1 and right = 4.

Step-05:

Since loc points at right, so algorithm starts

from left and move towards right.

https://topperworld.in/

Topperworld.in

As a[loc] > a[left], so algorithm moves left one position

towards right as-

Now, loc = 4, left = 2 and right = 4.

Step-06:

Since loc points at right, so algorithm starts

from left and move towards right.

As a[loc] < a[left], so we algorithm swaps a[loc] and

a[left] and loc points at left as-

https://topperworld.in/

Topperworld.in

Now, loc = 2, left = 2 and right = 4.

Step-07:

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] < a[right], so algorithm moves right one

position towards left as-

https://topperworld.in/

Topperworld.in

Now, loc = 2, left = 2 and right = 3.

Step-08:

Since loc points at left, so algorithm starts

from right and move towards left.

As a[loc] > a[right], so algorithm swaps a[loc] and

a[right] and loc points at right as-

Now, loc = 3, left = 2 and right = 3.

Step-09:

Since loc points at right, so algorithm starts

from left and move towards right.

https://topperworld.in/

Topperworld.in

As a[loc] > a[left], so algorithm moves left one position

towards right as-

Now, loc = 3, left = 3 and right = 3.

Now,

• loc, left and right points at the same element.

• This indicates the termination of procedure.

• The pivot element 25 is placed in its final position.

• All elements to the right side of element 25 are

greater than it.

• All elements to the left side of element 25 are

smaller than it.

https://topperworld.in/

Topperworld.in

Now, quick sort algorithm is applied on the left and

right sub arrays separately in the similar manner.

Quick Sort Analysis-

• To find the location of an element that splits the

array into two parts, O(n) operations are required.

• This is because every element in the array is

compared to the partitioning element.

• After the division, each section is examined

separately.

• If the array is split approximately in half (which is

not usually), then there will be log2n splits.

• Therefore, total comparisons required are f(n) = n x

log2n = O(nlog2n).

Advantages of Quick Sort-

The advantages of quick sort algorithm are-

• Quick Sort is an in-place sort, so it requires no

temporary memory.

• Quick Sort is typically faster than other algorithms.

https://topperworld.in/

Topperworld.in

(because its inner loop can be efficiently implemented

on most architectures)

• Quick Sort tends to make excellent usage of the

memory hierarchy like virtual memory or caches.

• Quick Sort can be easily parallelized due to its

divide and conquer nature.

Disadvantages of Quick Sort-

The disadvantages of quick sort algorithm are-

• The worst case complexity of quick sort is O(n2).

• This complexity is worse than O(nlogn) worst case

complexity of algorithms like merge sort, heap

sort etc.

• It is not a stable sort i.e. the order of equal elements

may not be preserved.

Time Complexity Analysis of Quick Sort

The average time complexity of quick sort is O(N

log(N)).

At each step, the input of size N is broken into two parts

say J and N-J.

https://topperworld.in/

Topperworld.in

T(N) = T(J) + T(N-J) + M(N)

The intuition is:

Time Complexity for N elements =

 Time Complexity for J elements +

 Time Complexity for N-J elements +

 Time Complexity for finding the pivot

where

• T(N) = Time Complexity of Quick Sort for input of

size N.

• T(J) = Time Complexity of Quick Sort for input of

size J.

• T(N-J) = Time Complexity of Quick Sort for input

of size N-J.

• M(N) = Time Complexity of finding the pivot

element for N elements.

Quick Sort performs differently based on:

• How we choose the pivot? M(N) time

• How we divide the N elements -> J and N-J where

J is from 0 to N-1

On solving for T(N), we will find the time complexity

of Quick Sort.

https://topperworld.in/

Topperworld.in

Best case Time Complexity of Quick Sort

• O(Nlog(N))

• the best case of quick sort is when we will select

pivot as a mean element.

• In this case the recursion will look as shown in

diagram, as we can see in diagram the height of

tree is logN and in each level we will be traversing

to all the elements with total operations will be

logN * N

• as we have selected mean element as pivot then the

array will be divided in branches of equal size so

that the height of the tree will be mininum

• pivot for each recurssion is represented using blue

color

• time complexity will be O(NlogN)

Explanation

Lets T(n) be the time complexity for best cases

n = total number of elements

then

T(n) = 2*T(n/2) + constant*n

2*T(n/2) is because we are dividing array into two array of equal size

constant*n is because we will be traversing elements of array in each level of tree

https://topperworld.in/

Topperworld.in

therefore,

T(n) = 2*T(n/2) + constant*n

further we will devide arrai in to array of equalsize so

T(n) = 2*(2*T(n/4) + constant*n/2) + constant*n == 4*T(n/4) + 2*constant*n

for this we can say that

T(n) = 2^k * T(n/(2^k)) + k*constant*n

then n = 2^k

k = log2(n)

therefore,

T(n) = n * T(1) + n*logn = O(n*log2(n))

Worst Case Time Complexity of Quick Sort

• O(N^2)

• This will happen when we will when our array will

be sorted and we select smallest or largest indexed

element as pivot

as we can see in diagram we are always selecting

pivot as corner index elements

so height of the tree will be n and in top node we

will be doing N operations

then n-1 and so on till 1

Explanation

lets T(n) ne total time complexity for worst case

https://topperworld.in/

Topperworld.in

n = total number of elements

T(n) = T(n-1) + constant*n

as we are dividing array into two parts one consist of single element and other of n-1

and we will traverse individual array

T(n) = T(n-2) + constant*(n-1) + constant*n = T(n-2) + 2*constant*n - constant

T(n) = T(n-3) + 3*constant*n - 2*constant - constant

T(n) = T(n-k) + k*constant*n - (k-1)*constant - 2*constant - constant

T(n) = T(n-k) + k*constant*n - constant*[(k-1) + 3 + 2 + 1]

T(n) = T(n-k) + k*n*constant - constant*[k*(k-1)/2]

put n=k

T(n) = T(0) + constant*n*n - constant*[n*(n-1)/2]

removing constant terms

T(n) = n*n - n*(n-1)/2

T(n) = O(n^2)

• we can reduce complexity for worst case by

randomly picking pivot instead of selecting start or

end elements

Average Case Time Complexity of Quick Sort

• O(Nlog(N))

• the overall average case for the quick sort is this

which we will get by taking average of all

complexities

Explanation

lets T(n) be total time taken

then for average we will consider random element as pivot

lets index i be pivot

then time complexity will be

T(n) = T(i) + T(n-i)

https://topperworld.in/

Topperworld.in

T(n) = 1/n *[\sum_{i=1}^{n-1} T(i)] + 1/n*[\sum_{i=1}^{n-1} T(n-i)]

As [\sum_{i=1}^{n-1} T(i)] and [\sum_{i=1}^{n-1} T(n-i)] equal likely functions

therefore

T(n) = 2/n*[\sum_{i=1}^{n-1} T(i)]

multiply both side by n

n*T(n) = 2*[\sum_{i=1}^{n-1} T(i)] (1)

put n = n-1

 (n-1)*T(n-1) = 2*[\sum_{i=1}^{n-2} T(i)] (2)

substract 1 and 2

then we will get

 n*T(n) - (n-1)*T(n-1) = 2*T(n-1) + c*n^2 + c*(n-1)^2

 n*T(n) = T(n-1)[2+n-1] + 2*c*n - c

 n*T(n) = T(n-1)*(n+1) + 2*c*n [removed c as it was constant]

divide both side by n*(n+1),

 T(n)/(n+1) = T(n-1)/n + 2*c/(n+1)(3)

put n = n-1,

 T(n-1)/n = T(n-2)/(n-1) + 2*c/n (4)

put n = n-2,

 T(n-2)/n = T(n-3)/(n-2) + 2*c/(n-1) (5)

by putting 4 in 3 and then 3 in 2 we will get

 T(n)/(n+1) = T(n-2)/(n-1) + 2*c/(n-1) + 2*c/n + 2*c/(n+1)

also we can find equation for T(n-2) by putting n = n-2 in (3)

at last we will get

 T(n)/(n+1) = T(1)/2 + 2*c * [1/(n-1) + 1/n + 1/(n+1) +]

https://topperworld.in/

Topperworld.in

 T(n)/(n+1) = T(1)/2 + 2*c*log(n) + C

 T(n) = 2*c*log(n) * (n+1)

now by removing constants,

 T(n) = log(n)*(n+1)

therefore,

 T(n) = O(n*log(n))

Space Complexity

• O(N)

• as we are not creating any container other then

given array therefore Space complexity will be in

order of N

The derivation is based on the following notation:

T(N) = Time Complexity of Quick Sort for input of size

N.

Recursion Tree Method

The recursion tree method is commonly used in cases

where the problem gets divided into smaller problems,

typically of the same size. A recurrence tree is drawn,

branching until the base case is reached. Then, we sum

the total time taken at all levels in order to derive the

overall time complexity.

https://topperworld.in/

Topperworld.in

For example, consider the following example:

T(n) = aT(n/b) + cn

Here, the problem is getting split into a subproblems,

each of which has a size of n/b. Hence, the first level of

the recurrence tree would look as follows:

Example

Example: T(n) = 2T(n/2) + n

In this problem, one can observe that the problem is

getting split into two problems of half the initial size.

Further the additional cost here equals the size. Hence,

after the first division, the recursion tree will have two

child nodes with input size n/2. We then proceed in this

manner until the final input size becomes 1.

 Therefore, the final recursion tree will

look as follows (note that each node contains only the

extra cost that is taken) :

https://topperworld.in/

Topperworld.in

As the recursion tree is complete, it remains to calculate

the total sum of the entries. For that, we first need to

determine the number of levels in the recursion tree.

Since each level of the tree splits each of the nodes in

that level to half the size of their parents, one can

conclude that the total number of levels here is log2n.

The next thing we note here is that in each level, the

sum of the nodes is n. Therefore, the overall time

complexity is given by:

T(n) = n + n + log2n times

= n (1 + 1 +log2n times)

= n log2n

= θ(n log2n)

Therefore, the overall time complexity of the operation

with the given recurrence equation is given by θ(n

log2n).

https://topperworld.in/

Topperworld.in

Example 1

 Consider T (n) = 2T + n2

We have to obtain the asymptotic bound using recursion

tree method.

Solution: The Recursion tree for the above recurrence is

https://topperworld.in/

Topperworld.in

 Example 2: Consider the following recurrence

 T (n) = 4T +n

Obtain the asymptotic bound using recursion tree

method.

Solution: The recursion trees for the above recurrence

https://topperworld.in/

Topperworld.in

Example 3: Consider the following recurrence

Obtain the asymptotic bound using recursion tree

method.

Solution: The given Recurrence has the following

recursion tree

When we add the values across the levels of the recursion trees, we get a value of n for every

level. The longest path from the root to leaf is

https://topperworld.in/

Topperworld.in

Master Theorem-

Master’s theorem solves recurrence relations of the

form

Here, a >= 1, b > 1, k >= 0 and p is a real number.

Master Theorem Cases-

To solve recurrence relations using Master’s theorem,

we compare a with bk
.

hen, we follow the following cases-

https://topperworld.in/

Topperworld.in

Case-01:

If a > bk, then T(n) = θ (nlog
b
a)

Case-02:

If a = bk and

• If p < -1, then T(n) = θ (nlog
b
a)

• If p = -1, then T(n) = θ (nlog
b
a.log2n)

• If p > -1, then T(n) = θ (nlog
b
a.logp+1n)

Case-03:

If a < bk and

• If p < 0, then T(n) = O (nk)

• If p >= 0, then T(n) = θ (nklogpn)

PRACTICE PROBLEMS BASED ON MASTER

THEOREM-

Problem-01:

Solve the following recurrence relation using Master’s

theorem-

T(n) = 3T(n/2) + n2

https://topperworld.in/

Topperworld.in

Solution-

We compare the given recurrence relation with T(n) =

aT(n/b) + θ (nklogpn).

Then, we have-

a = 3

b = 2

k = 2

p = 0

Now, a = 3 and bk = 22 = 4.

Clearly, a < bk.

So, we follow case-03.

Since p = 0, so we have-

T(n) = θ (nklogpn)

T(n) = θ (n2log0n)

Thus,

T(n) = θ (n2)

https://topperworld.in/

Topperworld.in

Problem-02:

Solve the following recurrence relation using Master’s

theorem-

T(n) = 2T(n/2) + nlogn

Solution-

We compare the given recurrence relation with T(n) =

aT(n/b) + θ (nklogpn).

Then, we have-

a = 2

b = 2

k = 1

p = 1

Now, a = 2 and bk = 21 = 2.

Clearly, a = bk.

So, we follow case-02.

Since p = 1, so we have-

T(n) = θ (nlog
b

a.logp+1n)

T(n) = θ (nlog
2

2.log1+1n)

https://topperworld.in/

Topperworld.in

Thus,

T(n) = θ (nlog2n)

Problem-03:

Solve the following recurrence relation using Master’s theorem-

T(n) = 2T(n/4) + n0.51

Solution-

We compare the given recurrence relation with T(n) =

aT(n/b) + θ (nklogpn).

Then, we have-

a = 2

b = 4

k = 0.51

p = 0

Now, a = 2 and bk = 40.51 = 2.0279.

Clearly, a < bk.

So, we follow case-03.

Since p = 0, so we have-

https://topperworld.in/

Topperworld.in

T(n) = θ (nklogpn)

T(n) = θ (n0.51log0n)

Thus,

T(n) = θ (n0.51)

Problem-04:

Solve the following recurrence relation using Master’s

theorem-

T(n) = √2T(n/2) + logn

Solution-

We compare the given recurrence relation with T(n) =

aT(n/b) + θ (nklogpn).

Then, we have-

a = √2

b = 2

k = 0

p = 1

https://topperworld.in/

Topperworld.in

Now, a = √2 = 1.414 and bk = 20 = 1.

Clearly, a > bk.

So, we follow case-01.

So, we have-

T(n) = θ (nlog
b
a)

T(n) = θ (nlog
2
√2)

T(n) = θ (n1/2)

Thus,

T(n) = θ (√n)

Problem-05:

Solve the following recurrence relation using Master’s

theorem-

T(n) = 8T(n/4) – n2logn

Solution-

• The given recurrence relation does not correspond

to the general form of Master’s theorem.

https://topperworld.in/

Topperworld.in

• So, it can not be solved using Master’s theorem.

Problem-06:

Solve the following recurrence relation using Master’s

theorem-

T(n) = 3T(n/3) + n/2

Solution-

• We write the given recurrence relation as T(n) =

3T(n/3) + n.

• This is because in the general form, we have θ for

function f(n) which hides constants in it.

• Now, we can easily apply Master’s theorem.

We compare the given recurrence relation with T(n) =

aT(n/b) + θ (nklogpn).

Then, we have-

a = 3

b = 3

k = 1

p = 0

https://topperworld.in/

Topperworld.in

Now, a = 3 and bk = 31 = 3.

Clearly, a = bk.

So, we follow case-02.

Since p = 0, so we have-

T(n) = θ (nlog
b

a.logp+1n)

T(n) = θ (nlog
3

3.log0+1n)

T(n) = θ (n1.log1n)

Thus,

T(n) = θ (nlogn)

Problem-07:

Form a recurrence relation for the following code and

solve it using Master’s theorem-

A(n)

{

if(n<=1)

return 1;

https://topperworld.in/

Topperworld.in

else

return A(√n);

}

Solution-

• We write a recurrence relation for the given code as

T(n) = T(√n) + 1.

• Here 1 = Constant time taken for comparing and

returning the value.

• We can not directly apply Master’s Theorem on

this recurrence relation.

• This is because it does not correspond to the

general form of Master’s theorem.

• However, we can modify and bring it in the general

form to apply Master’s theorem.

Let-

n = 2m ……(1)

Then-

T(2m) = T(2m/2) + 1

Now, let T(2m) = S(m), then T(2m/2) = S(m/2)

https://topperworld.in/

Topperworld.in

So, we have-

S(m) = S(m/2) +1

Now, we can easily apply Master’s Theorem.

We compare the given recurrence relation with S(m) =

aS(m/b) + θ (mklogpm).

Then, we have-

a = 1

b = 2

k = 0

p = 0

Now, a = 1 and bk = 20 = 1.

Clearly, a = bk.

So, we follow case-02.

Since p = 0, so we have-

S(m) = θ (mlog
b

a.logp+1m)

S(m) = θ (mlog
2
1.log0+1m)

S(m) = θ (m0.log1m)

Thus,

https://topperworld.in/

Topperworld.in

S(m) = θ(logm) ……(2)

Now,

• From (1), we have n = 2m.

• So, logn = mlog2 which implies m = log2n.

Substituting in (2), we get-

S(m) = θ(loglog2n)

https://topperworld.in/

Topperworld.in

UNIT-2

Dynamic Programming:-

Dynamic Programming is a technique in computer

programming that helps to efficiently solve a class of

problems that have overlapping subproblems

and optimal substructure property.

Elements of Dynamic programming

Dynamic programming posses two important

elements which are as given below:

 Advanced Design and analysis Techniques

Dynamic programming:- Elements, Matrix-chain multiplication, longest common subsequence,

Greedy algorithms:- Elements , Activity- Selection problem, Huffman codes, Task scheduling problem, Travelling

Salesman Problem.

Advanced data Structures:- Binomial heaps, Fibonacci heaps, Splay Trees, Red-Black Trees.

Topperworld.in

https://topperworld.in/
https://topperworld.in/

Topperworld.in

1. Overlapping sub problem

One of the main characteristics is to split the

problem into subproblem, as similar as divide and

conquer approach. The overlapping subproblem is

found in that problem where bigger problems share

the same smaller problem. However unlike divide

and conquer there are many subproblems in which

overlap cannot be treated distinctly or

independently. Basically, there are two ways for

handling the overlapping subproblems:

a .Top down approach

It is also termed as memoization technique. In

this, the problem is broken into subproblem and

these subproblems are solved and the solutions

are remembered, in case if they need to be solved

in future. Which means that the values are stored

in a data structure, which will help us to reach

them efficiently when the same problem will

occur during the program execution.

b.Bottom up approach

It is also termed as tabulation technique. In this,

all subproblems are needed to be solved in

advance and then used to build up a solution to

the larger problem.

2. Optimal sub structure

It implies that the optimal solution can be obtained

from the optimal solution of its subproblem. So

optimal substructure is simply an optimal selection

https://topperworld.in/

Topperworld.in

among all the possible substructures that can help

to select the best structure of the same kind to exist.

Example :

1. LCS(Longest Chain Subsequence)

2. MCM(Matrix Chain Multiplication)

1.LCS (Longest Chain Subsequence)

Subsequence: A subsequence of a given sequence is just

the given sequence with some elements left out.

Given two sequences X and Y, we say that the sequence

is:

X={x1,x2,x3……xn}

Y={ y1,y2,y3……yn}

The aim this problem is to find a maximum Length

Common Sequence of X & Y . This problem is

applicable in DNA matching in which we need to find

out how similar are two stands of DNA or how closely

related .

Algorithm of LCS:

Algorithm: LCS-Length-Table-Formulation (X, Y)

m := length(X)

n := length(Y)

for i = 1 to m do

https://topperworld.in/

Topperworld.in

 C[i, 0] := 0

for j = 1 to n do

 C[0, j] := 0

for i = 1 to m do

 for j = 1 to n do

 if xi = yj

 C[i, j] := C[i - 1, j - 1] + 1

 B[i, j] := ‘D’

 else

 if C[i -1, j] ≥ C[i, j -1]

 C[i, j] := C[i - 1, j] + 1

 B[i, j] := ‘U’

 else

 C[i, j] := C[i, j - 1]

 B[i, j] := ‘L’

return C and B

Algorithm: Print-LCS (B, X, i, j)

if i = 0 and j = 0

 return

if B[i, j] = ‘D’

 Print-LCS(B, X, i-1, j-1)

 Print(xi)

else if B[i, j] = ‘U’

 Print-LCS(B, X, i-1, j)

else

 Print-LCS(B, X, i, j-1)

This algorithm will print the longest common subsequence of X and Y.

Example of Longest Common Sequence

https://topperworld.in/

Topperworld.in

Example: Given two sequences X [1...m] and Y [1.....n]. Find the longest

common subsequences to both.

here X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A)

 m = length [X] and n = length [Y]

 m = 7 and n = 6

Here x1= x [1] = A y1= y [1] = B

 x2= B y2= D

 x3= C y3= C

 x4= B y4= A

 x5= D y5= B

 x6= A y6= A

 x7= B

Now fill the values of c [i, j] in m x n table

Initially, for i=1 to 7 c [i, 0] = 0

 For j = 0 to 6 c [0, j] = 0

That is:

https://topperworld.in/

Topperworld.in

Now for i=1 and j = 1

 x1 and y1 we get x1 ≠ y1 i.e. A ≠ B

And c [i-1,j] = c [0, 1] = 0

 c [i, j-1] = c [1,0] = 0

That is, c [i-1,j]= c [i, j-1] so c [1, 1] = 0 and b [1, 1] = ' ↑ '

Now for i=1 and j = 2

x1 and y2 we get x1 ≠ y2 i.e. A ≠ D

 c [i-1,j] = c [0, 2] = 0

 c [i, j-1] = c [1,1] = 0

That is, c [i-1,j]= c [i, j-1] and c [1, 2] = 0 b [1, 2] = ' ↑ '

Now for i=1 and j = 3

 x1 and y3 we get x1 ≠ y3 i.e. A ≠ C

 c [i-1,j] = c [0, 3] = 0

 c [i, j-1] = c [1,2] = 0

so c [1,3] = 0 b [1,3] = ' ↑ '

https://topperworld.in/

Topperworld.in

Now for i=1 and j = 4

 x1 and y4 we get. x1=y4 i.e A = A

 c [1,4] = c [1-1,4-1] + 1

 = c [0, 3] + 1

 = 0 + 1 = 1

 c [1,4] = 1

 b [1,4] = ' ↖ '

Now for i=1 and j = 5

 x1 and y5 we get x1 ≠ y5

 c [i-1,j] = c [0, 5] = 0

 c [i, j-1] = c [1,4] = 1

Thus c [i, j-1] > c [i-1,j] i.e. c [1, 5] = c [i, j-1] = 1. So b [1, 5] = '←'

Now for i=1 and j = 6

 x1 and y6 we get x1=y6

 c [1, 6] = c [1-1,6-1] + 1

 = c [0, 5] + 1 = 0 + 1 = 1

 c [1,6] = 1

 b [1,6] = ' ↖ '

https://topperworld.in/

Topperworld.in

Now for i=2 and j = 1

 We get x2 and y1 B = B i.e. x2= y1

 c [2,1] = c [2-1,1-1] + 1

 = c [1, 0] + 1

 = 0 + 1 = 1

 c [2, 1] = 1 and b [2, 1] = ' ↖ '

Similarly, we fill the all values of c [i, j] and we get

https://topperworld.in/

Topperworld.in

Step 4: Constructing an LCS: The initial call is PRINT-LCS (b, X, X.length, Y.length)

PRINT-LCS (b, x, i, j)

 1. if i=0 or j=0

 2. then return

 3. if b [i,j] = ' ↖ '

 4. then PRINT-LCS (b,x,i-1,j-1)

 5. print x_i

 6. else if b [i,j] = ' ↑ '

 7. then PRINT-LCS (b,X,i-1,j)

 8. else PRINT-LCS (b,X,i,j-1)

Example: Determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0).

Solution: let X = (1,0,0,1,0,1,0,1) and Y = (0,1,0,1,1,0,1,1,0).

We are looking for c [8, 9]. The following table is built.

https://topperworld.in/

Topperworld.in

From the table we can deduct that LCS = 6. There are several such sequences, for instance

(1,0,0,1,1,0) (0,1,0,1,0,1) and (0,0,1,1,0,1)

2) Matrix Chain Multiplication

It is a Method under Dynamic Programming in which

previous output is taken as input for next.

Here, Chain means one matrix's column is equal to the

second matrix's row

Algorithm of Matrix Chain Multiplication

MATRIX-CHAIN-ORDER (p)

https://topperworld.in/

Topperworld.in

 1. n length[p]-1

 2. for i ← 1 to n

 3. do m [i, i] ← 0

 4. for l ← 2 to n // l is the chain length

 5. do for i ← 1 to n-l + 1

 6. do j ← i+ l -1

 7. m[i,j] ← ∞

 8. for k ← i to j-1

 9. do q ← m [i, k] + m [k + 1, j] + pi-1 pk pj

 10. If q < m [i,j]

 11. then m [i,j] ← q

 12. s [i,j] ← k

 13. return m and s.

Example Problem of Matrix Chain Multiplication

Example-1 : We are given the sequence {4, 10, 3, 12,

20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x

12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i,

j≤ 5. We know M [i, i] = 0 for all i.

https://topperworld.in/

Topperworld.in

Let us proceed with working away from the diagonal. We compute the optimal solution for

the product of 2 matrices.

Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-

1)

On the basis of sequence, we make a formula , for Mi ------> p[i] as

column and p[i-1] as row .

In Dynamic Programming, initialization of every method done by

'0'.So we initialize it by '0'.It will sort out diagonally.

We have to sort out all the combination but the minimum output

combination is taken into consideration.

Calculation of Product of 2 matrices:

1. m (1,2) = m1 x m2

 = 4 x 10 x 10 x 3

 = 4 x 10 x 3 = 120

2. m (2, 3) = m2 x m3

 = 10 x 3 x 3 x 12

 = 10 x 3 x 12 = 360

3. m (3, 4) = m3 x m4

 = 3 x 12 x 12 x 20

 = 3 x 12 x 20 = 720

4. m (4,5) = m4 x m5

 = 12 x 20 x 20 x 7

 = 12 x 20 x 7 = 1680

https://topperworld.in/

Topperworld.in

o We initialize the diagonal element with equal i,j

value with '0'.

o After that second diagonal is sorted out and we get

all the values corresponded to it

Now the third diagonal will be solved out in the same

way.

Now product of 3 matrices:

M [1, 3] = M1 M2 M3

1. There are two cases by which we can solve this

multiplication: (M1 x M2) + M3, M1+ (M2x M3)

2. After solving both cases we choose the case in which

minimum output is there.

https://topperworld.in/

Topperworld.in

M [1, 3] =264

As Comparing both output 264 is minimum in both cases

so we insert 264 in table and (M1 x M2) + M3 this

combination is chosen for the output making.

M [2, 4] = M2 M3 M4

1. There are two cases by which we can solve this

multiplication: (M2x M3)+M4, M2+(M3 x M4)

2. After solving both cases we choose the case in which

minimum output is there.

M [2, 4] = 1320

As Comparing both output 1320 is minimum in both

cases so we insert 1320 in table and M2+(M3 x M4) this

combination is chosen for the output making.

M [3, 5] = M3 M4 M5

1. There are two cases by which we can solve this

multiplication: (M3 x M4) + M5, M3+ (M4xM5)

2. After solving both cases we choose the case in which

minimum output is there.

https://topperworld.in/

Topperworld.in

M [3, 5] = 1140

As Comparing both output 1140 is minimum in both

cases so we insert 1140 in table and (M3 x M4) + M5this

combination is chosen for the output making.

Now Product of 4 matrices:

M [1, 4] = M1 M2 M3 M4

There are three cases by which we can solve this

multiplication:

1. (M1 x M2 x M3) M4

2. M1 x(M2 x M3 x M4)

3. (M1 xM2) x (M3 x M4)

After solving these cases we choose the case in which

minimum output is there

M [1, 4] =1080

As comparing the output of different cases then '1080' is

minimum output, so we insert 1080 in the table and

https://topperworld.in/

Topperworld.in

(M1 xM2) x (M3 x M4) combination is taken out in output

making,

M [2, 5] = M2 M3 M4 M5

There are three cases by which we can solve this

multiplication:

1. (M2 x M3 x M4)x M5

2. M2 x(M3 x M4 x M5)

3. (M2 x M3)x (M4 x M5)

After solving these cases we choose the case in which

minimum output is there

M [2, 5] = 1350

As comparing the output of different cases then '1350' is

minimum output, so we insert 1350 in the table and M2 x(

M3 x M4 xM5)combination is taken out in output making.

Now Product of 5 matrices:

M [1, 5] = M1 M2 M3 M4 M5

https://topperworld.in/

Topperworld.in

There are five cases by which we can solve this

multiplication:

1. (M1 x M2 xM3 x M4)x M5

2. M1 x(M2 xM3 x M4 xM5)

3. (M1 x M2 xM3)x M4 xM5

4. M1 x M2x(M3 x M4 xM5)

After solving these cases we choose the case in which

minimum output is there

M [1, 5] = 1344

As comparing the output of different cases then '1344' is

minimum output, so we insert 1344 in the table and M1 x

M2 x(M3 x M4 x M5)combination is taken out in output

making.

Final Output is:

Step 3: Computing Optimal Costs: let us assume that

matrix Ai has dimension pi-1x pi for i=1, 2, 3....n. The

input is a sequence (p0,p1,......pn) where length [p] = n+1.

The procedure uses an auxiliary table m [1....n, 1.....n]

https://topperworld.in/

Topperworld.in

for storing m [i, j] costs an auxiliary table s [1.....n, 1.....n]

that record which index of k achieved the optimal costs

in computing m [i, j].

The algorithm first computes m [i, j] ← 0 for i=1, 2,

3.....n, the minimum costs for the chain of length 1.

Greedy Algorithm

A greedy algorithm is an approach for solving a

problem by selecting the best option available at the

moment. It doesn't worry whether the current best result

will bring the overall optimal result.

The algorithm never reverses the earlier decision even if

the choice is wrong. It works in a top-down approach.

This algorithm may not produce the best result for all

the problems. It's because it always goes for the local

best choice to produce the global best result.

Elements of Greedy Algorithm

1. Greedy Choice Property

If an optimal solution to the problem can be found by choosing the best choice at

each step without reconsidering the previous steps once chosen, the problem can be

solved using a greedy approach. This property is called greedy choice property.

2. Optimal Substructure

https://topperworld.in/

Topperworld.in

If the optimal overall solution to the problem corresponds to the optimal solution to

its subproblems, then the problem can be solved using a greedy approach. This

property is called optimal substructure.

Method of Greedy Algorithm:

i) Huffman Coding

ii) Knapsack problem

iii) Activity Selection Problem (ASP)

iv) Travelling Salesman Problem (TSP)

v) Task Scheduling

Huffman Coding : Huffman Coding is a technique of compressing data to reduce

its size without losing any of the details. It was first developed by David Huffman.

Huffman Coding is generally useful to compress the data in which there are

frequently occurring characters.

o i) Data can be encoded efficiently using Huffman Codes.

o (ii) It is a widely used and beneficial technique for compressing

data.

o (iii) Huffman's greedy algorithm uses a table of the frequencies

of occurrences of each character to build up an optimal way of

representing each character as a binary string.

https://topperworld.in/

Topperworld.in

o Suppose we have 105 characters in a data file. Normal

Storage: 8 bits per character (ASCII) - 8 x 105 bits in a file.

But we want to compress the file and save it compactly.

Suppose only six characters appear in the file:

o

o How can we represent the data in a Compact way?

(i) Fixed length Code: Each letter represented by an equal

number of bits. With a fixed length code, at least 3 bits per

character:

For example:

 a 0

 b 101

 c 100

https://topperworld.in/

Topperworld.in

 d 111

 e 1101

 f 1100

Number of bits = (45 x 1 + 13 x 3 + 12 x 3 + 16 x 3 + 9

x 4 + 5 x 4) x 1000

= 2.24 x 105bits

Thus, 224,000 bits to represent the file, a saving of

approximately 25%.This is an optimal character code for

this file.

Algorithm of Huffman Code

Huffman (C)

1. n=|C|

2. Q ← C

3. for i=1 to n-1

4. do

5. z= allocate-Node ()

6. x= left[z]=Extract-Min(Q)

7. y= right[z] =Extract-Min(Q)

8. f [z]=f[x]+f[y]

9. Insert (Q, z)

10. return Extract-Min (Q)

https://topperworld.in/

Topperworld.in

Example: Find an optimal Huffman Code for the

following set of frequencies:

1. a: 50 b: 25 c: 15 d: 40 e: 75

Solution:

https://topperworld.in/
https://www.javatpoint.com/huffman-coding-algorithm
https://www.javatpoint.com/huffman-coding-algorithm
https://www.javatpoint.com/huffman-coding-algorithm
https://www.javatpoint.com/huffman-coding-algorithm
https://www.javatpoint.com/huffman-coding-algorithm
https://www.javatpoint.com/huffman-coding-algorithm

Topperworld.in

i.e.

Again for i=2

48.8M

785

Hello Java Program for Beginners

https://topperworld.in/

Topperworld.in

https://topperworld.in/

Topperworld.in

Similarly, we apply the same process we get

https://topperworld.in/

Topperworld.in

https://topperworld.in/

Topperworld.in

Thus, the final output is:

https://topperworld.in/

Topperworld.in

2) Knapsack Problem:

The knapsack problem is a problem in combinational

optimization : Given a set of items, each with a weight

and a value, determine the number of each item to

include in a collection so that the total weight is less than

or equal to a given limit and the total value is as large as

possible.

For example, the weight of the container is 20 kg. We

have to select the items in such a way that the sum of the

weight of items should be either smaller than or equal to

the weight of the container, and the profit should be

maximum.

Maximize ∑n=1n (xi . pi)

subject to constraint,

∑n=1n (xi . wi) ⩽ W

There are two types of knapsack problems:

o 0/1 knapsack problem

o Fractional knapsack problem

1) Fractional Knapsack Problem

https://topperworld.in/

Topperworld.in

Algorithm: Greedy-Fractional-Knapsack (w [

1..n], p[1..n], W)

for i = 1 to n

 do x[i] = 0

weight = 0

for i = 1 to n

 if weight + w[i] ≤ W then

 x[i] = 1

 weight = weight + w[i]

 else

 x[i] = (W - weight) / w[i]

 weight = W

 break

return x

Examples of Fractional Knapsack

Problem: Consider the following instances of the

fractional knapsack problem: n = 3, M = 20, V = (24, 25,

15) and W = (18, 15, 20) find the feasible solutions.

Solution:

https://topperworld.in/

Topperworld.in

Let us arrange items by decreasing order of profit density.

Assume that items are labeled as X = (I1, I2, I3), have profit V

= {24, 25, 15} and weight W = {18, 15, 20}.

We shall select one by one item from Table. If the

inclusion of an item does not cross the knapsack

capacity, then add it. Otherwise, break the current item

and select only the portion of item equivalent to

remaining knapsack capacity. Select the profit

accordingly. We should stop when knapsack is full or

all items are scanned.

Initialize, Weight of selected items, SW = 0,

Profit of selected items, SP = 0,

Set of selected items, S = { },

Here, Knapsack capacity M = 20.

Iteration 1 : SW= (SW + w2) = 0 + 15 = 15

SW ≤ M, so select I2

https://topperworld.in/

Topperworld.in

S = { I2 }, SW = 15, SP = 0 + 25 = 25

Iteration 2 : SW + w1 > M, so break down item I1.

The remaining capacity of the knapsack is 5 unit, so

select only 5 units of item I1.

frac = (M – SW) / W[i] = (20 – 15) / 18 = 5 / 18

S = { I2, I1 * 5/18 }

SP = SP + v1 * frac = 25 + (24 * (5/18)) = 25 + 6.67 =

31.67

SW = SW + w1 * frac = 15 + (18 * (5/18)) = 15 + 5 =

20

The knapsack is full. Fractional Greedy

algorithm selects items { I2, I1 * 5/18 }, and it gives a

profit of 31.67 units.

Problem: Find the optimal solution for knapsack problem (fraction) where

knapsack capacity = 28, P = {9, 5, 2, 7, 6, 16, 3} and w = {2, 5, 6, 11, 1, 9, 1}.

Solution:

Arrange items in decreasing order of profit to weight ratio

https://topperworld.in/

Topperworld.in

Initialize, Weight = 0, P = 0, M = 28, S = { }

Where S is the solution set, P and W is profit and

weight of included items, respectively. M is the

capacity of the knapsack.

Iteration 1

(Weight + w5) ≤ M, so select I5

So, S = { I5 }, Weight = 0 + 1 = 1, P = 0 + 6= 6

Iteration 2

(Weight + w1) ≤ M, so select I1

So, S = {I5 ,I1 }, Weight = 1 + 2 = 3, P = 6 + 9= 15

Iteration 3

https://topperworld.in/

Topperworld.in

(Weight + w7) ≤ M, so select I7

o, S = {I5, I1, I7 }, Weight = 3 + 1 = 4, P = 15 + 3= 18

Iteration 4

(Weight + w6) ≤ M, so select I6

So, S = {I5, I1, I7, I6 }, Weight = 4 + 9 = 13, P = 18 +

16= 34

Iteration 5

(Weight + w2) ≤ M, so select I2

So, S = {I5, I1, I7, I6, I2 }, Weight = 13 + 5 = 18, P = 34

+ 5= 39

Iteration 6

(Weight + w4) > M, So I4 must be broken down into

two parts x and y such that x = capacity left in knapsack

and y = I4 – x.

Available knapsack capacity is 10 units. So we can

select only (28 – 18) / 11 = 0.91 unit of I4

So S = {I5, I1, I7, I6, I2, 0.91 * I4 }, Weight = 18 +

0.91*11 = 28, P = 39 + 0.91 * 7= 45.37

https://topperworld.in/

Topperworld.in

 Activity Selection Problem

The activity selection problem is a mathematical

optimization problem. Our first illustration is the

problem of scheduling a resource among several

challenge activities. We find a greedy algorithm provides

a well designed and simple method for selecting a

maximum- size set of manually compatible activities.

• Span of activity is defined by its start time and

finishing time. Suppose we have such n activities.

• Aim of algorithm is to find optimal schedule with

maximum number of activities to be carried out

with limited resources. Suppose S = {a1, a2, a3, ..

an} is the set of activities that we want to schedule.

• Scheduled activities must be compatible with each

other. Start time of activities is let’s say si and

finishing time is fi, then activities i and j are called

compatible if and only if fi < sj or fj < si. In other

words, two activities are compatible if their time

durations do not overlap.

• Consider the below time line. Activities {A1, A3}

and {A2, A3} are compatible set of activities.

• For given n activities, there may exist multiple such

schedules. Aim of activity selection algorithm is to

find out the longest schedule without overlap.

 Greedy Approach sort activities by their finishing time

in increasing order, so that f1 ≤ f2 ≤ f3 ≤ . . . ≤ fn. By

default it schedules the first activity in sorted list.

Subsequent next activities are scheduled whose start time

https://topperworld.in/

Topperworld.in

is larger than finish time of previous activity. Run

through all possible activities and do the same.

Algorithm for Activity Selection Problem

GREEDY- ACTIVITY SELECTOR (s, f)

// A is Set of n activities sorted by finishing time.

// S = { A[1] }, solution set, initially which contains first activity.

1. n ← length [s]

2. A ← {1}

3. j ← 1.

4. for i ← 2 to n

5. do if si ≥ fi

6. then A ← A ∪ {i}

7. j ← i

8. return A

Example: Given 10 activities along with their start and end time as

S = (A1 A2 A3 A4 A5 A6 A7 A8 A9 A10)

Si = (1,2,3,4,7,8,9,9,11,12)

fi = (3,5,4,7,10,9,11,13,12,14)

Compute a schedule where the greatest number of

activities takes place.

Solution: The solution to the above Activity scheduling

problem using a greedy strategy is illustrated below:

Arranging the activities in increasing order of end time

https://topperworld.in/

Topperworld.in

Now, schedule A1

Next schedule A3 as A1 and A3 are non-interfering.

Next skip A2 as it is interfering.

Next, schedule A4 as A1 A3 and A4 are non-interfering, then next,

schedule A6 as A1 A3 A4 and A6 are non-interfering.

Skip A5 as it is interfering.

Next, schedule A7 as A1 A3 A4 A6 and A7 are non-interfering.

Next, schedule A9 as A1 A3 A4 A6 A7 and A9 are non-interfering.

Skip A8 as it is interfering.

Next, schedule A10 as A1 A3 A4 A6 A7 A9 and A10 are non-interfering.

Thus the final Activity schedule is:

https://topperworld.in/

Topperworld.in

Now we can understand another example :

https://topperworld.in/
https://iq.opengenus.org/content/images/2019/03/Example1.png

Topperworld.in

In this example, we take the start and finish time of activities

as follows:

start = [1, 3, 2, 0, 5, 8, 11]

finish = [3, 4, 5, 7, 9, 10, 12]

Sorted by their finish time, the activity 0 gets selected. As the

activity 1 has starting time which is equal to the finish time of

activity 0, it gets selected.

 Activities 2 and 3 have smaller

starting time than finish time of activity 1, so they get

rejected. Based on similar comparisons, activities 4 and 6 also

get selected, whereas activity 5 gets rejected.

https://topperworld.in/
https://iq.opengenus.org/content/images/2019/03/Example2-2.png

Topperworld.in

In this example, in all the activities 0, 1, 4 and 6 get selected,

while others get rejected.

Task Scheduling Algorithm

This is the dispute of optimally scheduling unit-time tasks on a

single processor, where each job has a deadline and a penalty

that necessary be paid if the deadline is missed.

Example: Find the optimal schedule for the following task with given weight (penalties) and

deadlines.

1 2 3 4 5 6

di 4 2 4 3 1 4

wi 70 60 50 40 30 20

Solution: According to the Greedy algorithm we sort the jobs in decreasing order of their

penalties so that minimum of penalties will be charged.

In this problem, we can see that the maximum time for which uniprocessor machine will run

in 6 units because it is the maximum deadline.

Let Ti represents the tasks where i = 1 to 7

T5 and T6 cannot be accepted after T7 so penalty is

w5 + w6 = 30 + 20 = 50 (2 3 4 1 7 5 6)

Other schedule is

https://topperworld.in/

Topperworld.in

(2 4 1 3 7 5 6)

There can be many other schedules but (2 4 1 3 7 5 6) is optimal.

Travelling Salesman Problem (TSP)

The traveling salesman problem (TSP) is an algorithmic problem tasked with

finding the shortest route between a set of points and locations that must be visited.

In the problem statement, the points are the cities a salesperson might visit. The

salesman‘s goal is to keep both the travel costs and the distance traveled as low as

possible.

Solution: The cost- adjacency matrix of graph G is as follows:

costij =

https://topperworld.in/

Topperworld.in

The tour starts from area H1 and then select the minimum cost area reachable from H1.

Mark area H6 because it is the minimum cost area reachable from H1 and then select minimum

cost area reachable from H6.

https://topperworld.in/

Topperworld.in

Mark area H7 because it is the minimum cost area reachable from H6 and then select minimum

cost area reachable from H7.

Mark area H8 because it is the minimum cost area reachable from H8.

https://topperworld.in/

Topperworld.in

Mark area H5 because it is the minimum cost area reachable from H5.

Mark area H2 because it is the minimum cost area reachable from H2.

https://topperworld.in/

Topperworld.in

Mark area H3 because it is the minimum cost area reachable from H3.

Mark area H4 and then select the minimum cost area reachable from H4 it is H1.So, using the

greedy strategy, we get the following.

4 3 2 4 3 2 1 6

H1 → H6 → H7 → H8 → H5 → H2 → H3 → H4 → H1.

Thus, the minimum travel cost = 4 + 3 + 2 + 4 + 3 + 2 + 1 + 6 = 25

.

Binomial heaps

https://topperworld.in/

Topperworld.in

 A binomial heap is a heap similar to a binary heap but also

supports quickly merging two heaps. This is achieved by

using a special tree structure. It is important as an

implementation of the mergeable heap

abstract data type (also called meldable heap), which is a

priority queue supporting merge operation.

Binomial tree

A binomial heap is implemented as a collection of binomial

trees (compare with a binary heap, which has a shape of a

single binary tree). A binomial tree is defined recursively:

• A binomial tree of order 0 is a single node

• A binomial tree of order k has a root node whose

children are roots of binomial trees of orders k−1, k−2,

..., 2, 1, 0 (in this order).

 Types of Binary Heap

A binary heap can be classified further as either a max-

heap or a min-heap based on the ordering property.

➢ Max-Heap :

In this heap, the key value of a node is greater than or equal to

the key value of the highest child.

Hence, H[Parent(i)] ≥ H[i]

• Max Heap conforms to the above properties of heap.

https://topperworld.in/

Topperworld.in

• In max heap, every node contains greater or equal value

element than its child nodes.

• Thus, root node contains the largest value element.

Min- heap:

In mean-heap, the key value of a node is lesser than or equal

to the key value of the lowest child.

Hence, H[Parent(i)] ≤ H[i]

In this context, basic operations are shown below with respect

to Max-Heap. Insertion and deletion of elements in and from

heaps need rearrangement of elements.

Hence, Heapify function needs to be called

• Min Heap conforms to the above properties of heap.

• In min heap, every node contains lesser value element

than its child nodes.

• Thus, root node contains the smallest value element.

https://topperworld.in/

Topperworld.in

Properties of Binary Heap

All right, now with the basics out of the way, let's take a

closer look at the specific properties of the heap data

structure.

1. Ordering

Nodes must be arranged in an order according to values. The

values should follow min-heap or max-heap property.

In min-heap property, the value of each node, or child, is

greater than or equal to the value of its parent, with the

minimum value at the root node.

https://topperworld.in/

Topperworld.in

Min-heap

In max-heap property, the value of each node, or child,

is less than or equal to the value of its parent, with the

maximum value at the root node.

https://topperworld.in/

Topperworld.in

Max-heap

2. Structural

All levels in a heap should be full. In other words, it should be

a complete binary tree:

• All levels of heap should be full, except the last one.

• Nodes or child must be filled from left to right strictly.

• Heap doesn't follow binary search tree principle. The

values in right and left child or nodes don't matter.

https://topperworld.in/

Topperworld.in

https://topperworld.in/

Topperworld.in

Fibonacci Heap :

 A fibonacci heap is a data structure that consists of a

collection of trees which follow min heap or max heap

property. We have already discussed min heap and max heap

property in the Heap Data Structure article. These two

properties are the characteristics of the trees present on a

fibonacci heap.

Example of fabonacci Series :

https://topperworld.in/

Topperworld.in

 his Fibonacci Heap H consists of five Fibonacci Heaps and

16 nodes. The line with arrow head indicates the root list.

Minimum node in the list is denoted by min[H] which is

holding 4.

What is a Splay Tree?

A splay tree is a self-balancing tree, but AVL and Red-Black

trees are also self-balancing trees then. What makes the splay

tree unique two trees. It has one extra property that makes it

unique is splaying.

Splaying

After an element is accessed, the splay operation is

performed, which brings the element to the root of the tree. If

the element is not in a root position, splaying can take one of

three patterns:

1. Zig (or zag) step

2. Zig-zig (or zag-zag) step

https://topperworld.in/
https://www.javatpoint.com/avl-tree
https://www.javatpoint.com/red-black-tree
https://www.javatpoint.com/red-black-tree

Topperworld.in

3. Zig-zag (or zag-zig) step

The step you take is dependent on the position of the node. If

the node is at the root, it is immediately returned.

1. Zig (or zag)

When no grandparent node exists, the splay function will

move the node up to the parent with a single rotation. A left

rotation is a zag and a right rotation is a zig.

Note: A left rotation corresponds to a right placement (the

node is right of the parent) and vice versa.

X is splayed, P is parent, T1, T2 and T3 are subtrees

2. Zig-zig (or zag-zag)

When a grandparent and parent node exist and are placed in a

similar orientation (e.g., the parent is left of the grandparent

https://topperworld.in/

Topperworld.in

and the node is left of the parent), the operation is either zig-

zig (left) or zag-zag (right).

3. Zig-zag (or zag-zig)

A zig-zag corresponds to the parent being left of the

grandparent and right of the parent. A zag-zig is the opposite.

Red -Black Tree

https://topperworld.in/

Topperworld.in

Red-Black tree is a self-balancing binary search tree in which

each node contains an extra bit for denoting the color of the

node, either red or black.

A red-black tree satisfies the following properties:

1. Red/Black Property: Every node is colored, either red

or black.

2. Root Property: The root is black.

3. Leaf Property: Every leaf (NIL) is black.

4. Red Property: If a red node has children then, the

children are always black.

5. Depth Property: For each node, any simple path from

this node to any of its descendant leaf has the same

black-depth (the number of black nodes).

Example

https://topperworld.in/

Topperworld.in

The tree above ensures that every path from the root to a leaf node has the same

amount of black nodes. In this case, there is one (excluding the root node).

Properties of a red-black tree

• Each tree node is colored either red or black.

• The root node of the tree is always black.

• Every path from the root to any of the leaf nodes must

have the same number of black nodes.

• No two red nodes can be adjacent, i.e., a red node cannot

be the parent or the child of another red node.

https://topperworld.in/

Topperworld.in

UNIT-3

Graph:-

 It is a non -linear , non – primitive data

structure i.e. represented with a set of verticle that are

connected by edge i.e. G (V , e)

GRAPH ALGORITHMS

Review of graph algorithms:-Traversal Methods(Depth first and Breadth first search),Topological sort, Strongly connected components,
Minimum spanning trees- Kruskal and Prims, Single source shortest paths, Relaxation, Dijkstras Algorithm, Bellman- Ford algorithm,
Single source shortest paths for directed acyclic graphs, All pairs shortest paths- shortest paths and matrix multiplication, Floyd-
Warshall algorithm.

Computational Complexity:-Basic Concepts, Polynomial Vs Non-Polynomial Complexity, NP- hard and NP-complete classes.

Topperworld.in

https://topperworld.in/
https://topperworld.in/

Topperworld.in

Classification of Graph

The following are some of the commonly used terms in graph :

Term Description

Vertex Every individual data element is called a vertex or a node. In the above image,

 A, B, C, D & E are the vertices.

Edge (Arc) It is a connecting link between two nodes or vertices. Each edge has two ends

 and is represented as (startingVertex , endingVertex).

Undirected

Edge

It is a bidirectional edge.

Directed

Edge

It is a unidirectional edge.

Weighted

Edge.

An edge with value (cost) on it.

Degree The total number of edges connected to a vertex in a graph.

Indegree The total number of incoming edges connected to a vertex.

Outdegree The total number of outgoing edges connected to a vertex.

Self-loop An edge is called a self-loop if its two endpoints coincide with each other.

Adjacency Vertices are said to be adjacent to one another if there is an edge connecting them.

Graph Traversal Algorithm

i)DFS (Depth First Search)

ii)BFS (Breadth First Search)

DFS (Depth First Search)

https://topperworld.in/

Topperworld.in

Breadth-first search (BFS) is an algorithm that is used to

graph data or searching tree or traversing structures. The full

form of BFS is the Breadth-first search.
 BFS is a graph traversal approach in

which you start at a source node and layer by layer through the graph,

analyzing the nodes directly related to the source node. Then, in BFS

traversal, you must move on to the next-level neighbor nodes.

According to the BFS, you must traverse the graph in a breadthwise

direction:

• To begin, move horizontally and visit all the current layer's

nodes.

• Continue to the next layer.

Algorithm of BFS :

Algorithm of BFS (G , s)

 1.for each vertex v ∈ V[G]-{s}

2. color [u]= White

3.d[u] := ∞

4. π[u]=NIL

5 color [s]:= GRAY

6.d[s]= NIL

7. d[s]:= NIL

8.Q= ɸ

9. ENQUEUE =(Q,s)

https://topperworld.in/

Topperworld.in

10.while (Q ≠ ɸ)

11.{ u=DEQUEUE(Q)

 12.for each v € Adj (u) in 'G'

13.{ If colour [v] = WHITE

14. color [v]:= GRAY

15.d[v]=d[u]+1

16.π[v]=u

17. ENQUEUE (Q, v) }

18.Color [u]= BLACK }

Breadth-First Search uses a Queue data Structure to store the

node and mark it as "visited" until it marks all the neighboring

vertices directly related to it. The queue operates on the First

https://topperworld.in/
https://topperworld.in/

Topperworld.in

In First Out (FIFO) principle, so the node's neighbors will be

viewed in the order in which it inserts them in the node,

starting with the node that was inserted first.

Application of DFS

i)Tropological Sort

ii)Strongly Connected Components

1)Tropological Sort :

Tropological sort is an algorithm which sorts a directed graph

by returning an array or a vector, or a list, that consists of

nodes where each node appears before all the nodes it points

to.

Here, we'll simply refer to it as an array, you can use a vector

or a list too.

Say we had a graph,

a --> b --> c

then the topological sort algorithm would return - [a, b, c].

Why? Because, a points to b, which means that a must come

before b in the sort. b points to c, which means that b must

come before c in the sort.

Let's take a graph and see the algorithm in action. Consider the graph

given below:

https://topperworld.in/

Topperworld.in

Initially in_degree[0]=0 and T is empty

So, we delete 0 from Queue and append it to T. The vertices directly

connected to 0 are 1 and 2 so we decrease their in_degree[] by 1. So,

now in_degree[1]=0 and so 1 is pushed in Queue.

Next we delete 1 from Queue and append it to T. Doing this we

decrease in_degree[2] by 1, and now it becomes 0 and 2 is pushed

into Queue.

https://topperworld.in/

Topperworld.in

So, we continue doing like this, and further iterations looks like as

follows:

https://topperworld.in/

Topperworld.in

https://topperworld.in/

Topperworld.in

So at last we get our Topological sorting in T i.e. : 0, 1, 2, 3, 4, 5

ii) Strongly Connected Component

A strongly connected component is the portion of a directed graph in which there

is a path from each vertex to another vertex. It is applicable only on a directed

graph.

For example:

Let us take the graph below.

Initial Graph

The strongly connected components of the above graph are:

https://topperworld.in/
https://topperworld.in/
https://topperworld.in/

Topperworld.in

You can observe that in the first strongly connected component, every vertex can

reach the other vertex through the directed path.

 2 . DFS (Depth First Search)

DFS is a recursive traversal algorithm for searching all

the vertices of a graph or tree data structure. It starts

from the first node of graph G and then goes to further

vertices until the goal vertex is reached.

• DFS uses stack as its backend data structure

• edges that lead to an unvisited node are called

discovery edges while the edges that lead to an

already visited node are called block edges.

 1.Algorithm of DFS (G)

2.for each vertex u ∈ V[G]

3.color u =WHITE

4.π[u]=NIL

5.Time =0;

6.for each value u ∈ V[G]

7.if (color [u]= WHITE

8.DFS -VISIT (G ,u)

Algo DFS VISIT (G , u)

https://topperworld.in/

Topperworld.in

1.Time = time +1; // white vertex ‘ u’ has just been

discover

2.d[u] = time

3.color[u] =GRAY

4.for each v ∈ Adj[u] in ‘G’ // explore edge (V , v)

5.if (color [v] =WHITE)

6.π[v]=u

7.DFS -VISIT (G , V)

8.Color [u] =BLACK

9.Time =time +1

10.f[u] = time

15.d[v]=d[u]+1

16.π[v]=u

17. ENQUEUE (Q, v) }

18.Color [u]= BLACK }

G = is a graph consisting of ‘v’ vertex where :-

π denotes the parents model from which a particular

nodes will be explore

d[u] & f[u] = denotes the discovery & finishing time of

https://topperworld.in/

Topperworld.in

the nodes u.

Let us consider the graph below:

Starting node: A

Step 1: Create an adjacency list for the above graph.

https://topperworld.in/

Topperworld.in

tep 2: Create an empty stack.

Step 3: Push ‘A’ into the stack

Step 4: Pop ‘A’ and push ‘B’ and ‘F’. Mark node ‘A’

as the visited node

Step 5: pop ‘F’ and push ‘D’. Mark ‘F’ as a visited

node.

https://topperworld.in/
https://data-flair.training/blogs/wp-content/uploads/sites/2/2021/07/Depth-First-Search-in-DS-normal-image03.jpg

Topperworld.in

Step 6: pop ‘D’ and push ‘C’. Mark ‘D’ as a visited

node.

Step 7: pop ‘C’ and push ‘E’. Mark ‘C’ as a visited node.

https://topperworld.in/

Topperworld.in

Step 8: pop ‘E’. Mark ‘E’ as a visited node. No new node is left.

Step 9: pop ‘B’. Mark ‘B’ as visited. All the nodes in the graph are visited now.

https://topperworld.in/
https://data-flair.training/blogs/wp-content/uploads/sites/2/2021/07/Depth-First-Search-in-DS-normal-image08.jpg

Topperworld.in

Minimum Spanning Tree

 Before we learn about spanning trees, we need to understand two graphs:

undirected graphs and connected graphs.

An undirected graph is a graph in which the edges do not point in any direction

(ie. the edges are bidirectional).

Undirected Graph

A connected graph is a graph in which there is always a path from a vertex to any

other vertex.

Connected Graph

Spanning tree

https://topperworld.in/

Topperworld.in

A spanning tree is a sub-graph of an undirected connected graph, which includes

all the vertices of the graph with a minimum possible number of edges. If a vertex

is missed, then it is not a spanning tree.

Example of a Spanning Tree

Let's understand the above definition with the help of

the example below.

The initial graph is:

Weighted graph

The possible spanning trees from the above graph are:

Minimum spanning tree - 1

https://topperworld.in/

Topperworld.in

Minimum spanning tree - 2

Minimum spanning tree - 3

Minimum spanning tree - 4

The minimum spanning tree from the above spanning

trees is:

https://topperworld.in/

Topperworld.in

Minimum spanning tree

The minimum spanning tree from a graph is found

using the two method in MST

i) Kruskal algorithm

ii) Prims algorithm

Kruskal's Algorithm :

Kruskal's Algorithm is used to find the minimum

spanning tree for a connected weighted graph. The main

target of the algorithm is to find the subset of edges by

using which we can traverse every vertex of the graph.

It follows the greedy approach that finds an optimum

solution at every stage instead of focusing on a global

optimum.

How does Kruskal's algorithm work?

https://topperworld.in/

Topperworld.in

In Kruskal's algorithm, we start from edges with the

lowest weight and keep adding the edges until the goal is

reached. The steps to implement Kruskal's algorithm are

listed as follows -

o First, sort all the edges from low weight to high.

o Now, take the edge with the lowest weight and add

it to the spanning tree. If the edge to be added creates

a cycle, then reject the edge.

o Continue to add the edges until we reach all vertices,

and a minimum spanning tree is created.

The applications of Kruskal's algorithm are -

o Kruskal's algorithm can be used to layout electrical

wiring among cities.

o It can be used to lay down LAN connections.

Algorithm of Kruskal :

1.{ constant a min -heap out of thr edge cost using

HEAPIFY

2. fir I =1 to n ;

3. do parent [i] =1 // each vertex is in a different set

4. i=0; min cost =0;

5. while ((i<n-1) && (heap not empty)) do

https://topperworld.in/

Topperworld.in

6.{ Delete 0 min cost edge (u,v) from the heap & re-

heapify using ADJUST

7. j= FIND (u) ,k = FIND (v)

8.if (j ≠ k)

9. { i= i+1

10. t [i ,1] =u , t[i,z]=v;

11. Min cost = min cost + cost (u, v)

12. UNION (j , k);

13.}}

14. if (i≠ n-1) then write (No spanning Tree is possible else return

Min cost

15.}

Example of Kruskal's algorithm

Now, let's see the working of Kruskal's algorithm using

an example. It will be easier to understand Kruskal's

algorithm using an example.

Suppose a weighted graph is -

https://topperworld.in/

Topperworld.in

Step 1 - First, add the edge AB with weight 1 to the

MST.

https://topperworld.in/

Topperworld.in

Step 2 - Add the edge DE with weight 2 to the MST as

it is not creating the cycle.

Step 3 - Add the edge BC with weight 3 to the MST, as

it is not creating any cycle or loop.

https://topperworld.in/

Topperworld.in

Step 4 - Now, pick the edge CD with weight 4 to the

MST, as it is not forming the cycle.

Step 5 - After that, pick the edge AE with

weight 5. Including this edge will create the cycle, so

discard it.

Step 6 - Pick the edge AC with weight 7. Including this

edge will create the cycle, so discard it.

Step 7 - Pick the edge AD with weight 10. Including this

edge will also create the cycle, so discard it.

https://topperworld.in/

Topperworld.in

So, the final minimum spanning tree obtained from the

given weighted graph by using Kruskal's algorithm is -

The cost of the MST is = AB + DE + BC + CD = 1 + 2 +

3 + 4 = 10.

Now, the number of edges in the above tree equals the

number of vertices minus 1. So, the algorithm stops here.

Prims Algorithm

Prim's algorithm to find minimum cost spanning tree

(as Kruskal's algorithm) uses the greedy approach.

Prim's algorithm shares a similarity with the shortest

path first algorithms.

➢ Prim’s Algorithm is a famous greedy

algorithm.

https://topperworld.in/

Topperworld.in

➢ It is used for finding the Minimum Spanning

Tree (MST) of a given graph.

➢ To apply Prim’s algorithm, the given graph

must be weighted, connected and undirected

Algorithm of Prims (e , cost , n, t)

1.{ let (k,l) be an edge of minimum cost in e

2. Min cost = cost (k, l) ,I =1

3. { [I ,1] = k , t [I , z] =l

4. for I =1 to n // initialize near

5. if (cost [I ,k] < cost [i ,l])

6. then near [i] =k;

7.else near [i]= l }

8.near [k] = near [l]=0;

9. for I =3 to n-1 do ;

10. { Let j is an index such that near [;] ≠ 0 & cost [j,

near [j]] is minimum

11. t [i , j] = j ; t[i , 2] = near [j]

12. Min cost = Min cost + cost [j , near [i]

13. near [i] =o;

14. for k = 1 to n do // update near

15. if ((near [k] ≠ 0) && cost [k ,near [k] > cost [k, j])

https://topperworld.in/

Topperworld.in

16.then near [k] =I }

17.return Min cost }

Let’s take it one example :

Construct the minimum spanning tree (MST) for the

given graph using Prim’s Algorithm-

Solution-

The above discussed steps are followed to find the

minimum cost spanning tree using Prim’s Algorithm-

Step-01:

https://topperworld.in/

Topperworld.in

Step-02:

Step-03:

Step-04:

https://topperworld.in/

Topperworld.in

Step-05:

Step-06:

https://topperworld.in/

Topperworld.in

Since all the vertices have been included in the MST, so

we stop.

Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 10 + 25 + 22 + 12 + 16 + 14

= 99 units

Problem-02:

Using Prim’s Algorithm, find the cost of minimum

spanning tree (MST) of the given graph-

https://topperworld.in/

Topperworld.in

Solution-

The minimum spanning tree obtained by the application

of Prim’s Algorithm on the given graph is as shown

below-

Now, Cost of Minimum Spanning Tree

= Sum of all edge weights

= 1 + 4 + 2 + 6 + 3 + 10

= 26 units

To gain better understanding about Prim’s Algorithm,

Single source shortest paths (SSSP)

https://topperworld.in/

Topperworld.in

The Single-Source Shortest Path (SSSP) problem

consists of finding the shortest paths between a given

vertex v and all other vertices in the graph. Algorithms

such as Breadth-First-Search (BFS) for unweighted

graphs or Dijkstra [1] solve this problem.

 In a shortest- paths

problem, we are given a weighted, directed graphs G =

(V, E), with weight function w: E → R mapping edges

to real-valued weights. The weight of path p = (v0,v1,.....

vk) is the total of the weights of its constituent edges:

1) Dijkstra’s Algorithm,

2) Bellman Ford Algorithm

a) INITIALIZE -SINGLE SOURCE (r)

1.d[r] = 0;

2.d[v]=0;

b) ALGORITHM RELAXATION (u , v , w)

1.if d[v]> d[u] + w[u , v]

2.then d[v]=d[u]+w[u ,v]

Here d[v] = distance of node v from source

https://topperworld.in/

Topperworld.in

Here,

 W= denotes the weight of the edges

r = Source code

t= destination node

u = any intermediate node

Dijkstra’s Algorithm(v ,cost , dist , n)

1.for I =1to n do

2 { r [i] = false , dist [i] = cost [v , i] } //

initialize s

3. r[v]=true , dist[v]=0.0 // put v in s

4.for sum = 2 to n-1 do // determine “ n-1”

path from

5.{ choose ‘u’ among those vertex not in ‘s’

https://topperworld.in/

Topperworld.in

such that d[u] is minimum

6. r[u] = true // put ‘u’ in s

7. for (each w adjacent to ‘u’ with r [w] = fix

)

8.if (d[w]>d[u] + cost[u,w]) then // relaxctive

of edge

9. d[w] = d[u] + cost[u,w]

10.}

In this algorithm ,

v = source node

u = intermediate node

cost = the weight of the edge

d = distance from source node

n= total no. of vertice

https://topperworld.in/

Topperworld.in

‘S’ define the set which is intically empty &

the vertices are choosen in set as according to

the Shortest distance .

Example of Dijkstra's Algorithm

Now that you know more about this algorithm, let's see how it

works behind the scenes with a a step-by-step example.

We have this graph:

The algorithm will generate the shortest path from node 0 to all the other nodes

in the graph.

Note : For this graph, we will assume that the weight of the edges represents the

distance between two nodes.

We will have the shortest path from node 0 to node 1, from node 0 to node 2,

from node 0 to node 3, and so on for every node in the graph.

Initially, we have this list of distances (please see the list below):

• The distance from the source node to itself is 0. For this example, the

source node will be node 0 but it can be any node that you choose.

• The distance from the source node to all other nodes has not been

determined yet, so we use the infinity symbol to represent this initially.

https://topperworld.in/

Topperworld.in

We also have this list (see below) to keep track of the nodes that have not been

visited yet (nodes that have not been included in the path):

Note: Since we are choosing to start at node 0, we can mark this node as visited.

Equivalently, we cross it off from the list of unvisited nodes and add a red

border to the corresponding node in diagram:

Now we need to start checking the distance from node 0 to its adjacent nodes.

As you can see, these are nodes 1 and 2 (see the red edges):

We need to update the distances from node 0 to node 1 and

node 2 with the weights of the edges that connect them to

node 0 (the source node). These weights are 2 and 6, respectively:

https://topperworld.in/

Topperworld.in

After updating the distances of the adjacent nodes, we need to:

• Select the node that is closest to the source node based on the current

known distances.

• Mark it as visited.

• Add it to the path.

If we check the list of distances, we can see that node 1 has the shortest distance

to the source node (a distance of 2), so we add it to the path.

In the diagram, we can represent this with a red edge:

We mark it with a red square in the list to represent that it has been "visited" and

that we have found the shortest path to this node:

We cross it off from the list of unvisited nodes:

https://topperworld.in/

Topperworld.in

Now we need to analyze the new adjacent nodes to find the shortest

path to reach them. We will only analyze the nodes that are adjacent

to the nodes that are already part of the shortest path (the path

marked with red edges).

Node 3 and node 2 are both adjacent to nodes that are already in the

path because they are directly connected to node 1 and node 0,

respectively, as you can see below. These are the nodes that we will

analyze in the next step.

Since we already have the distance from the source node to node 2 written down

in our list, we don't need to update the distance this time. We only need to

update the distance from the source node to the new adjacent node (node 3):

This distance is 7. Let's see why.

To find the distance from the source node to another node (in this case, node 3),

we add the weights of all the edges that form the shortest path to reach that

node:

• For node 3: the total distance is 7 because we add the weights of the

edges that form the path 0 -> 1 -> 3 (2 for the edge 0 -> 1 and 5 for the

edge 1 -> 3).

https://topperworld.in/

Topperworld.in

Now that we have the distance to the adjacent nodes, we have to choose which

node will be added to the path. We must select the unvisited node with the

shortest (currently known) distance to the source node.

From the list of distances, we can immediately detect that this is node 2 with

distance 6:

We add it to the path graphically with a red border around the node and a red

edge:

We also mark it as visited by adding a small red square in the list of distances

and crossing it off from the list of unvisited nodes:

Now we need to repeat the process to find the shortest path from the source

node to the new adjacent node, which is node 3.

You can see that we have two possible paths 0 -> 1 -> 3 or 0 -> 2 -> 3. Let's see

how we can decide which one is the shortest path.

https://topperworld.in/

Topperworld.in

Node 3 already has a distance in the list that was recorded previously (7, see the

list below). This distance was the result of a previous step, where we added the

weights 5 and 2 of the two edges that we needed to cross to follow the path 0 ->

1 -> 3.

But now we have another alternative. If we choose to follow the path 0 -> 2 ->

3, we would need to follow two edges 0 -> 2 and 2 -> 3 with

weights 6 and 8, respectively, which represents a total distance of 14.

Clearly, the first (existing) distance is shorter (7 vs. 14), so we will choose to

keep the original path 0 -> 1 -> 3. We only update the distance if the new

path is shorter.

Therefore, we add this node to the path using the first alternative: 0 -> 1 -> 3.

We mark this node as visited and cross it off from the list of

unvisited nodes:

https://topperworld.in/

Topperworld.in

Now we repeat the process again.

We need to check the new adjacent nodes that we have not visited so far. This

time, these nodes are node 4 and node 5 since they are adjacent to node 3.

We update the distances of these nodes to the source node, always trying to find

a shorter path, if possible:

• For node 4: the distance is 17 from the path 0 -> 1 -> 3 -> 4.

• For node 5: the distance is 22 from the path 0 -> 1 -> 3 -> 5.

We need to choose which unvisited node will be marked as visited

now. In this case, it's node 4 because it has the shortest distance in

the list of distances. We add it graphically in the diagram:

https://topperworld.in/

Topperworld.in

We also mark it as "visited" by adding a small red square in the list:

And we cross it off from the list of unvisited nodes:

And we repeat the process again. We check the adjacent nodes:

node 5 and node 6. We need to analyze each possible path that we

can follow to reach them from nodes that have already been marked

as visited and added to the path.

For node 5:

https://topperworld.in/

Topperworld.in

• The first option is to follow the path 0 -> 1 -> 3 -> 5, which has a distance

of 22 from the source node (2 + 5 + 15). This distance was already

recorded in the list of distances in a previous step.

• The second option would be to follow the path 0 -> 1 -> 3 -> 4 -> 5,

which has a distance of 23 from the source node (2 + 5 + 10 + 6).

Clearly, the first path is shorter, so we choose it for node 5.

For node 6:

• The path available is 0 -> 1 -> 3 -> 4 -> 6, which has a distance

of 19 from the source node (2 + 5 + 10 + 2).

We mark the node with the shortest (currently known) distance as visited. In this case,

node 6.

And we cross it off from the list of unvisited nodes:

Now we have this path (marked in red):

https://topperworld.in/

Topperworld.in

Only one node has not been visited yet, node 5. Let's see how we can

include it in the path.

There are three different paths that we can take to reach node 5 from

the nodes that have been added to the path:

• Option 1: 0 -> 1 -> 3 -> 5 with a distance of 22 (2 + 5 + 15).

• Option 2: 0 -> 1 -> 3 -> 4 -> 5 with a distance of 23 (2 + 5 + 10

+ 6).

• Option 3: 0 -> 1 -> 3 -> 4 -> 6 -> 5 with a distance of 25 (2 + 5

+ 10 + 2 + 6).

We select the shortest path: 0 -> 1 -> 3 -> 5 with a distance of 22.

We mark the node as visited and cross it off from the list of

unvisited nodes:

https://topperworld.in/

Topperworld.in

And voilà! We have the final result with the shortest path from

node 0 to each node in the graph.

In the diagram, the red lines mark the edges that belong to the

shortest path. You need to follow these edges to follow the shortest

path to reach a given node in the graph starting from node 0.

 2. Bellman-Ford algorithm

Bellman -Ford Algorithm(v ,cost, dist, n)

1.for i=1 to n do

2.{ d[i] = cost[v , i] }

3.for k=2 to n-1 do

4.{ for each ‘u’ such that u ≠ v & has atleast one in long edge

https://topperworld.in/

Topperworld.in

do

5. { for each (i, u) in the graph do

6.{ if (do[u] > d[i] + cost [i, u]

 Then d[u]=d[i] + cost [i, u]

7.}}}

In this Algorithm

n= total no. of vertices

d= distance from source

v= destination node

cost= weight of edge

a = denotes that total no. of intermediate edge i.e. use for SD

computation

➢ Bellman Ford algorithm helps us find the shortest path from a vertex to all

other vertices of a weighted graph.

➢ t is similar to Dijkstra's algorithm but it can work with graphs in which

edges can have negative weights.

➢ if the weighted graph contains the negative weight values, then the

Dijkstra algorithm does not confirm whether it produces the correct

answer or not.

➢ It begins with a starting vertex and calculates the distances between

other vertices that a single edge can reach.

By doing this repeatedly for all vertices, we can guarantee that the result is

optimized.

https://topperworld.in/

Topperworld.in

Step-1 for Bellman Ford's algorithm

Step-2 for Bellman Ford's algorithm

https://topperworld.in/

Topperworld.in

Step-3 for Bellman Ford's algorithm

Step-4 for Bellman Ford's algorithm

https://topperworld.in/

Topperworld.in

Step-5 for Bellman Ford's algorithm

Step-6 for Bellman Ford's algorithm

Single source shortest path in DAG

https://topperworld.in/

Topperworld.in

➢ Single Source shortest path is basically the

shortest distance between the source and other

vertices in the graph.

➢ We can find the shortest path from the source to

every other vertex by relaxing the edges of the

weighted directed acyclic

graph G=(V,E) according to the topological sort

of its vertices.

DAG - SHORTEST - PATHS (G, w, s)

 1. Topologically sort the vertices of G.

 2. INITIALIZE - SINGLE- SOURCE (G, s)

 3. for each vertex u taken in topologically sorted order

 4. do for each vertex v ∈ Adj [u]

 5. do RELAX (u, v, w)

https://topperworld.in/

Topperworld.in

Step1: To topologically sort vertices apply DFS (Depth

First Search) and then arrange vertices in linear order

by decreasing order of finish time.

https://topperworld.in/

Topperworld.in

Now, take each vertex in topologically sorted order and

relax each edge

1. adj [s] →t, x

2. 0 + 3 < ∞

3. d [t] ← 3

4. 0 + 2 < ∞

https://topperworld.in/

Topperworld.in

5. d [x] ← 2

1. adj [t] → r, x

2. 3 + 1 < ∞

3. d [r] ← 4

4. 3 + 5 ≤ 2

1. adj [x] → y

2. 2 - 3 < ∞

3. d [y] ← -1

1. adj [y] → r

2. -1 + 4 < 4

3. 3 <4

4. d [r] ← 3

https://topperworld.in/

Topperworld.in

Thus the Shortest Path is:

1. s to x is 2

2. s to y is -1

3. s to t is 3

4. s to r is 3

Computational complexity

In computer science, the computational complexity or

simply complexity of an algorithm is the amount of

resources required to run it.

 Particular focus is given

to time and memory requirements.

 The complexity of a problem is the complexity of the

best algorithms that allow solving the problem

https://topperworld.in/

Topperworld.in

There are lots of variants of this bit that we are generally

looking at when we are doing any computer programming or

in general or in most practical purposes are just two main

complexities, one is Time Complexity, and the other is Space

(memory) Complexity.

Time complexity is simple as how fast your code runs, how

much time it will take, depends on the number of steps

Example of Complexity in Time (execution) and Space

(memory) factors :

Example-1 : More Complex

i = 1; 1s

while(i <= 10) 11s

{

 a = 5; 10s

 result = i * a; 10s

 printf(“\n” /d”, result); 10s

 i++; 10s

}

Here, we assume each variable is equal to 2 Bytes. In the

above example we use three variables (i, a, result) which is 6

Bytes.

Execution Time : 52s

Memory (Space) : 6 Bytes

Example-2 : Less Complex

a = 5; 1s

https://topperworld.in/

Topperworld.in

i = 1; 1s

while(i<=10) 11s

{

 result = i * a; 10s

 printf(“\n” /d”, result); 10s

 i++; 10s

}

Execution Time : 43s

Memory (Space) : 6 Bytes

Definition of Polynomial time: - If we produce an output

according to the given input within a specific amount of time

such as within a minute, hours. This is known as Polynomial

time.

Definition of Non-Polynomial time: - If we produce an output

according to the given input but there are no time constraints is

known as Non-Polynomial time. But yes output will produce

but time is not fixed yet.

NP -hard:

 An NP-hard problem is at least as hard as the hardest

problem in NP and it is the class of the problems such

that every problem in NP reduces to NP-hard.

NP- Complete

NP-complete problem, any of a class of computational

problems for which no efficient solution algorithm has been

found.

https://topperworld.in/
https://www.britannica.com/science/algorithm

Topperworld.in

 Many significant computer-science problems belong

to this class—e.g., the traveling salesman problem,

satisfiability problems, and graph-covering problems.

https://topperworld.in/

Topperworld.in

UNIT-4

Flow Network:

 Flow Network is a directed graph that

is used for modeling material Flow.

 There are two different vertices; one is

a source which produces material at some steady rate,

and another one is sink which consumes the content at

the same constant speed.

Definition: A Flow Network is a directed graph G = (V, E)

such that

1. For each edge (u, v) ∈ E, we associate a nonnegative

weight capacity c (u, v) ≥ 0.If (u, v) ∉ E, we assume that

c (u, v) = 0.

Network and Sorting Algorithms

Flow and Sorting Networks Flow networks, Ford- Fulkerson method, Maximum Bipartite matching, Sorting
Networks, Comparison network, The zero- One principle, Bitonic sorting network, Merging networks

Topperworld.in

https://topperworld.in/
https://topperworld.in/

Topperworld.in

2. There are two distinguishing points, the source s, and the

sink t;

3. For every vertex v ∈ V, there is a path from s to t

containing v.

Let G = (V, E) be a flow network. Let s be the source of

the network, and let t be the sink. A flow in G is a real-

valued function f: V x V→R such that the following

properties hold:

o Capacity Constraint: For all u, v ∈ V, we need f (u, v) ≤ c (u, v).

o Skew Symmetry: For all u, v ∈ V, we need f (u, v) = - f (u, v).

o Flow Conservation: For all u ∈ V- {s, t}, we need

The quantity f (u, v), which can be positive or negative, is

known as the net flow from vertex u to vertex v. In

the maximum-flow problem, we are given a flow network G

with source s and sink t, and we wish to find a flow of

maximum value from s to t.

https://topperworld.in/

Topperworld.in

The value of the flow is the net flow from the source,

The positive net flow entering a vertex v is described by

https://topperworld.in/

Topperworld.in

The positive net flow leaving a vertex is described

symmetrically. One interpretation of the Flow-Conservation

Property is that the positive net flow entering a vertex other

than the source or sink must equal the positive net flow leaving

the vertex.

A flow f is said to be integer-valued if f (u, v) is an integer for

all (u, v) ∈ E. Clearly, the value of the flow is an integer is an

integer-valued flow.

Comparison Networks

Comparison Networks are a type of sorting networks

which always sort their inputs. Wires and comparator

comprise comparison network. A Comparator is a

device which has two inputs (x, y) and outputs (x’, y’).

It performs the following function:

x' = min (x, y),

y' = max (x, y)

Comparison Network is a set of comparators interconnected by

wires. Running time of comparator can define regarding depth.

Depth of a Wire: An input wire of a comparison network has

depth 0. Now, if a comparator has two input wires with depths

dx and dy' then its output wires have depth max (dx,dy) + 1.

https://topperworld.in/

Topperworld.in

A sorting network is a comparison network for which the

output sequence is monotonically increasing (that is b1≤ b2 ≤

....bn) for every input sequence.

Fig: A Sorting network based on Insertion Sort

Network Flow Problems

The most obvious flow network problem is the following:

Problem1: Given a flow network G = (V, E), the maximum

flow problem is to find a flow with maximum value.

https://topperworld.in/

Topperworld.in

Problem 2: The multiple source and sink maximum flow

problem is similar to the maximum flow problem, except there

is a set {s1,s2,s3.......sn} of sources and a set {t1,t2,t3..........tn} of

sinks.

Fortunately, this problem is no solid than regular maximum

flow. Given multiple sources and sink flow network G, we

define a new flow network G' by adding

o A super source s,

o A super sink t,

o For each si, add edge (s, si) with capacity ∞, and

o For each ti,add edge (ti,t) with capacity ∞

Figure shows a multiple sources and sinks flow network and an

equivalent single source and sink flow network

Residual Networks: The Residual Network consists of an

edge that can admit more net flow. Suppose we have a flow

network G = (V, E) with source s and sink t. Let f be a flow in

G, and examine a pair of vertices u, v ∈ V. The sum of

additional net flow we can push from u to v before exceeding

the capacity c (u, v) is the residual capacity of (u, v) given by

https://topperworld.in/

Topperworld.in

When the net flow f (u, v) is negative, the residual capacity

cf (u,v) is greater than the capacity c (u, v).

For Example: if c (u, v) = 16 and f (u, v) =16 and f (u, v) = -4,

then the residual capacity cf (u,v) is 20.

Given a flow network G = (V, E) and a flow f, the residual

network of G induced by f is Gf = (V, Ef), where

That is, each edge of the residual network, or residual edge, can

admit a strictly positive net flow.

Augmenting Path: Given a flow network G = (V, E) and a

flow f, an augmenting path p is a simple path from s to t in the

residual networkGf. By the solution of the residual network,

each edge (u, v) on an augmenting path admits some additional

positive net flow from u to v without violating the capacity

constraint on the edge.

Let G = (V, E) be a flow network with flow f. The residual

capacity of an augmenting path p is

The residual capacity is the maximal amount of flow that can

be pushed through the augmenting path. If there is an

augmenting path, then each edge on it has a positive capacity.

We will use this fact to compute a maximum flow in a flow

network.

https://topperworld.in/

Topperworld.in

Ford – Fulkerson Algorithm

 The Ford–Fulkerson method or Ford–Fulkerson

algorithm (FFA) is a greedy algorithm that computes

the maximum flow in a flow network.

https://topperworld.in/

Topperworld.in

A term, flow network, is used to describe a network of vertices and edges with a

source (S) and a sink (T). Each vertex, except S and T, can receive and send an

equal amount of stuff through it.

Algorithm of Ford Fulkerson

FORD-FULKERSON METHOD (G, s, t)

 1. Initialize flow f to 0

 2. while there exists an augmenting path p

 3. do argument flow f along p

 4. Return f

FORD-FULKERSON (G, s, t)

 1. for each edge (u, v) ∈ E [G]

 2. do f [u, v] ← 0

 3. f [u, v] ← 0

 4. while there exists a path p from s to t in the residual

network Gf.

 5. do cf (p)←min? { Cf (u ,v):(u ,v)is on p}

 6. for each edge (u, v) in p

 7. do f [u, v] ← f [u, v] + cf (p)

 8. f [u, v] ←f[u ,v]

Example: Each Directed Edge is labeled with capacity.

Use the Ford-Fulkerson algorithm to find the maximum

flow.

https://topperworld.in/

Topperworld.in

Solution: The left side of each part shows the residual

network Gf with a shaded augmenting path p,and the right side

of each part shows the net flow f.

https://topperworld.in/

Topperworld.in

https://topperworld.in/

Topperworld.in

Maximum Bipartite matching

A Bipartite Graph is a graph whose vertices can be

divided into two independent sets L and R such that

every edge (u, v) either connect a vertex from L to R or

a vertex from R to L. In other words, for every edge (u,

v) either u ∈ L and v ∈ L. We can also say that no edge

exists that connect vertices of the same set.

Matching is a Bipartite Graph is a set of edges chosen in such

a way that no two edges share an endpoint. Given an undirected

Graph G = (V, E), a Matching is a subset of edge M ⊆ E such

that for all vertices v ∈ V, at most one edge of M is incident on

v.

A Maximum matching is a matching of maximum cardinality,

that is, a matching M such that for any matching M', we

have|M|>|M' |.

https://topperworld.in/

Topperworld.in

Finding a maximum bipartite matching

We can use the Ford-Fulkerson method to find a maximum

matching in an undirected bipartite graph G= (V, E) in time

polynomial in |V| and |E|. The trick is to construct a flow

network G= (V',E') for the bipartite graph G as follows. We let

the source s and sink t be new vertices not in V, and we let V'=V

∪{s,t}.If the vertex partition of G is V = L∪R, the directed

edges of G' are the edges of E, directed from L to R, along with

|V| new directed edges:

https://topperworld.in/

Topperworld.in

Algorithm of Maximum Bipartite

matching:

1.bool kuhn(vertex v) {

2. if (used[v]) return false;

3. used[v] = true;

4. for (vertex q adjacent to v) {

5. if ((q has no pair) or kuhn(pairs[q])) {

6. pairs[q] = v;

7. return true;

8. }

9. }

10.}

11.find_max_matching {

12. for (vertex v = {

13. 1,

14. ..,

15. n

16. }) {

17. used = {

18. 0

19. };

20. kuhn(v);

21. }

22.}

https://topperworld.in/

Topperworld.in

The zero -one principal

The zero-one principle says that if a sorting network works

correctly when each input is drawn from the set {0, 1}, then it

works correctly on arbitrary input numbers. (The numbers can

be integers, reals, or, in general, any set of values from any

linearly ordered set.) As we construct sorting networks and

other comparison networks, the zero-one principle will allow

us to focus on their operation for input sequences consisting

solely of 0’s and 1’s. Once we have constructed a sorting

network and proved that it can sort all zero-one sequences, we

shall appeal to the zero-one principle to show that it properly

sorts sequences of arbitrary values. The proof of the zero-one

principle relies on the notion of a monotonically increasing

function.

 If a comparison network

transforms the input sequence a = ha1, a2, . . . , an into the

output sequence b = hb1, b2, . . . , bn, then for any

monotonically increasing function f , the network transforms

the input sequence f (a) = h f (a1), f (a2), . . . , f (an) into the

output sequence f (b) = h f (b1), f (b2), . . . , f (bn).

 Proof We shall first prove the claim that if f is a

monotonically increasing function, then a single comparator

with inputs f (x) and f (y) produces outputs f (min(x, y)) and f

(max(x, y)). We then use induction to prove the lemma.

https://topperworld.in/

Topperworld.in

Theorem (Zero-one principle) If a comparison network with

n inputs sorts all 2n possible sequences of 0’s and 1’s

correctly, then it sorts all sequences of arbitrary numbers

correctly.

 Proof
 Suppose for the purpose of contradiction that the

network sorts all zero-one sequences, but there exists a

sequence of arbitrary numbers that the network does not

correctly sort. That is, there exists an input sequence ha1,a2,. .

. ,ani containing elements ai and aj such that ai < aj , but the

network places aj before ai in the output sequence. We define

a monotonically increasing function f as

Since the network places aj before ai in the output sequence

when ha1, a2, . . . , ani is input, that it places f (aj) before f (ai)

in the output sequence when h f (a1), f (a2), . . . , f (an) is

input. But since f (aj) = 1 and f (ai) = 0, we obtain the

contradiction that the network fails to sort the zero-one

sequence h f (a1), f (a2), . . . , f (an) correctly

Exercises: Prove that applying a monotonically increasing

function to a sorted sequence produces a sorted sequence.

Prove that a comparison network with n inputs correctly sorts

the input sequence (n, n − 1, . . . ,1) if and only if it correctly

https://topperworld.in/

Topperworld.in

sorts the n − 1 zero-one sequences <1, 0, 0, . . . ,0, 0>, <1, 1,

0, . . . ,0, 0>, . . ., <1, 1, 1, . . . ,1, 0>.

 A sorting network for sorting 4 numbers

Bitonic Sorting Network

A sequence that monotonically increases and then

monotonically decreases, or else monotonically decreases and

then monotonically increases is called a bitonic sequence. For

example: the sequence (2, 5, 6, 9, 3, 1) and (8, 7, 5, 2, 4, 6) are

both bitonic. The bitonic sorter is a comparison network that

sorts bitonic sequence of 0's and 1's.

Half-Cleaner: A bitonic sorter is containing several stages,

each of which is called a half-cleaner. Each half-cleaner is a

comparison network of depth 1 in which input line i is

compared with line 1+ for i = 1, 2..... .

Bitonic Sorter: By recursively connecting half-

cleaners, we can build a bitonic sorter, which is a

network that sorts bitonic sequences. The first stage of

BITONIC-SORTER [n] consists of HALF-CLEANER

[n], which

https://topperworld.in/

Topperworld.in

produces two bitonic sequences of half the size such

that every element in the top half is at least as small as

each element in the bottom half. Thus, we can complete

the sort by utilizing two copies of BITONIC-SORTER

[n/2] to sort the two halves recursively.

Bitonic Sort Algorithm

Bitonic sort is a parallel sorting algorithm that performs

O(n2log n) comparisons.

 Although the number of comparisons

is more than that in any other popular sorting algorithm, it

performs better for the parallel implementation because

elements are compared in a predefined sequence that must not

depend upon the data being sorted. The predefined sequence is

called the Bitonic sequence.

To understand the bitonic sort, we first have to understand

the Bitonic sequence.

In Bitonic sequence, elements are first arranged in increasing

order, and then after some particular index, they start

decreasing.

https://topperworld.in/

Topperworld.in

An array with A[0…i…n-1] is said to be bitonic, if there is an

index i, such that

1. A[0] < A[1] < A[2] A[i1] < A[i] > A[i+1] > A[i+2] > A[i+3] > ... >A[

n-1]

Where, 0 ≤ i ≤ n-1.

Before moving directly towards the algorithm of bitonic sort,

first, understand the conversion of any random sequence into a

bitonic sequence.

How to convert the random sequence into a bitonic sequence?

Consider a sequence A[0 ... n-1] of n elements. First, start

constructing a Bitonic sequence by using 4 elements of the

sequence. Sort the first 2 elements in ascending order and the

last 2 elements in descending order, concatenate this pair to

form a Bitonic sequence of 4 elements. Repeat this process for

the remaining pairs of the element until we find a Bitonic

sequence.

Let's understand the process to convert the random sequence

into a bitonic sequence using an example.

Suppose the elements of array are - {30, 70, 40, 80, 60, 20, 10, 50}

https://topperworld.in/

Topperworld.in

Merging Network

Merging Network is the network that can join two sorted input sequences into one sorted output

sequence. We adapt BITONIC-SORTER [n] to create the merging network MERGER [n].

The merging network is based on the following assumption:

Given two sorted sequences, if we reverse the order of the second sequence and

then connect the two sequences, the resulting sequence is bitonic.

For Example: Given two sorted zero-one sequences X = 00000111 and Y

=00001111, we reverse Y to get YR = 11110000.

he sorting network SORTER [n] need the merging network to implement a

parallel version of merge sort. The first stage of SORTER [n] consists of n/2

copies of MERGER [2] that work in parallel to merge pairs of a 1-element

sequence to produce a sorted sequence of length 2. The second stage subsists of

n/4 copies of MERGER [4] that merge pairs of these 2-element sorted sequences

to generate sorted sequences of length 4. In general, for k = 1, 2..... log n, stage k

consists of n/2k copies of MERGER [2k] that merge pairs of the 2k-1 element

sorted sequence to produce a sorted sequence of length2k. At the last stage, one

sorted sequence consisting of all the input values is produced. This sorting

network can be shown by induction to sort zero-one sequences, and therefore by

the zero-one principle, it can sort arbitrary values.

https://topperworld.in/

Topperworld.in

The recurrence given the depth of SORTER [n]

https://topperworld.in/

