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UNIT-1 

 

 
Design and Analysis of Algorithms: 

An algorithm is a set of steps of operations to solve a 

problem performing calculation, data processing, and 

automated reasoning tasks. An algorithm is an efficient 

method that can be expressed within finite amount of 

time and space.       

An algorithm is the best way to represent the solution of 

a particular problem in a very simple and efficient way. 

If we have an algorithm for a specific problem, then we 

can implement it in any programming language, 

meaning that the algorithm is independent from any 

programming languages.               

 

                      INTRODUCTION 

Review:-  Elementary Data Structures, Algorithms and its complexity(Time and Space), Analysing Algorithms, 

Asymptotic Notations, Priority Queue, Quick Sort. 

 

Recurrence relation:- Methods for solving recurrence(Substitution , Recursion tree, Master theorem), Strassen 

multiplication. 
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What is Algorithm 

He word Algorithm means “a process or set of rules to 

be followed in calculations or other problem-solving 

operations”. Therefore Algorithm refers to a set of 

rules/instructions that step-by-step define how a work is 

to be executed upon in order to get the expected results. 

Why study Algorithm ? 

The importance of algorithms is very high in today's 

world but in reality, what we focus on is the result, be it 

ios apps, android apps, or any other application. The 

reason we have these resultant applications is the 

Algorithm. If programming a building, then the 

algorithm is the pillar programming is standing on, and 

without pillars, there is no building. But why do we go 

for algorithms instead of going for the application 

directly? Let's get that from an example. Let's suppose 

we are building something, and we have the result in 

mind. We are not an expert, but still, we bring all the 

necessary items and design that thing. It also looks like 
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what we had in mind. But it does not fulfill the purpose 

we built it for. Do we have any use of it? This is what's 

an algorithm for a program because it provides meaning 

to the program. There is much reason to study 

algorithms as it is used in almost every digital 

application we use today. To showcase the value 

algorithms have, here we have some of its applications. 

 

Properties of Algorithm 

All Algorithms must satisfy the following criteria - 

1) Input 

There are more quantities that are extremely supplied. 

2) Output 

At least one quantity is produced. 

3) Definiteness 

Each instruction of the algorithm should be clear and 

unambiguous. 

 4) Finiteness 

The process should be terminated after a finite number 

of steps. 

5) Effectiveness 

Every instruction must be basic enough to be 

carried out theoretically or by using paper and 

pencil 
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For example,suppose you are cooking a recipe and you chop 

vegetables which are not be used in the recipe then it is a waste of 

time. 
 

 

 

 

6)Independent 

An algorithm should have step-by-step directions, which 

should be independent of any programming code. It 

should be such that it could be run on any of the 

programming languages. 

 

What are the Characteristics of an Algorithm 

i) Clear and Unambiguous: Algorithm should be 

clear and unambiguous. Each of its steps should 

be clear in all aspects and must lead to only one 

meaning. 
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ii) Well-Defined Inputs: If an algorithm says to take 

inputs, it should be well-defined inputs. 

 

iii) Well-Defined Outputs: The algorithm must 

clearly define what output will be yielded and it 

should be well-defined as well. 

iv) Finite-ness: The algorithm must be finite, i.e. it 

should not end up in an infinite loops or similar. 

 

v) Feasible: The algorithm must be simple, generic 

and practical, such that it can be executed upon 

with the available resources. It must not contain 

some future technology, or anything. 

 

vi) Language Independent: The Algorithm designed 

must be language-independent, i.e. it must be just 

plain instructions that can be implemented in any 

language, and yet the output will be same, as 

expected. 
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Advantages of Algorithms: 

 

i)It is easy to understand. 

 

ii)  Algorithm is a step-wise representation of a solution 

to a given problem. 

iii)In Algorithm the problem is broken down into 

smaller pieces or steps hence, it is easier  for the 

programmer to convert it into an actual program. 

 

Disadvantages of Algorithms: 
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i)Writing an algorithm takes a long time so it is time-

consuming. 

ii)Branching and Looping statements are difficult to 

show in Algorithms. 

Performance Analysis of Algorithm 

There are two types are: 

i) Time Complexity 

ii) Space Complexity 

Time Complexity 

Time complexity is the amount of time taken 

by an algorithm to run, as a function of the 

length of the input. It measures the time taken 

to execute each statement of code in an 

algorithm. Upskilling with the help of 

an introduction to algorithms free course will 

help you understand time complexity clearly. 

. 
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. 

 

 

 

What Is Space Complexity? 

When an algorithm is run on a computer, it necessitates 

a certain amount of memory space. The amount of 

memory used by a program to execute it is represented 

by its space complexity. Because a program requires 

memory to store input data and temporal values while 

running, the space complexity is auxiliary and input 

space. 
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Analyzing Algorithm 

 

To analyze a programming code or algorithm, we must 

notice that each instruction affects the overall 

performance of the algorithm and therefore, each 

instruction must be analyzed separately to analyze 

overall performance. However, there are some algorithm 

control structures which are present in each 

programming code and have a specific asymptotic 

analysis. 
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Some Algorithm Control Structures are: 

1. Sequencing 

2. If-then-else 

3. for loop 

4. While loop 

 

1. Sequencing: 

Suppose our algorithm consists of two parts A and B. A 

takes time tA and B takes time tB for computation. The 

total computation "tA + tB" is according to the sequence 

rule. According to maximum rule, this computation time 

is (max (tA,tB)). 

Example: 

Suppose tA =O (n) and tB = θ (n2).  

Then, the  total computation time can be calculated as 

 
Computation Time = tA + tB 

 = (max (tA,tB) 

 = (max (O (n), θ (n2)) = θ (n2) 
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2. If-then-else: 

 
 

The total time computation is according to the condition 

rule-"if-then-else." According to the maximum rule, this 

computation time is max (tA,tB). 

Example: 

Suppose tA = O (n2) and tB = θ (n2) 

Calculate the total computation time for the following: 
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Total Computation = (max (tA,tB)) 

                  = max (O (n2), θ (n2) = θ (n2) 

 

 

 

3. For loop: 

The general format of for loop is: 

 

 

 

 

1. For (initialization; condition; updation)   

2.    
3. Statement(s);   
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Complexity of for loop: 

The outer loop executes N times. Every time the outer 

loop executes, the inner loop executes M times. As a 

result, the statements in the inner loop execute a total 

of N * M times. Thus, the total complexity for the two 

loops is O (N2) 

Consider the following loop: 

 

 

 

 

1. for i ← 1 to n       

2.  {   

3.          P (i)   

4.  }   

If the computation time ti for ( PI) various as a function 

of "i", then the total computation time for the loop is 

given not by a multiplication but by a sum i.e. 

 

 

 

 

1. For i ← 1 to n       

2.  {   

3.             P (i)   

4.  }   

Takes  
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If the algorithms consist of nested "for" loops, then the 

total computation time is 

For i ← 1 to n 

 { 

      For j ←  1 to n        

    { 

      P (ij) 

    } 

 }   

Example: 

Consider the following "for" loop, Calculate the total 

computation time for the following: 

 

 

 

 

1. For i ← 2 to n-1   

2.     {   

3.         For j ← 3 to i   

4.          {   

5.                        Sum ← Sum+A [i] [j]   

6.                  }   
7.             }   

Solution: 
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The total Computation time is: 

 

 While loop: 

The Simple technique for analyzing the loop is to 

determine the function of variable involved whose value 

decreases each time around. Secondly, for terminating 

the loop, it is necessary that value must be a positive 

integer. By keeping track of how many times the value 

of function decreases, one can obtain the number of 

repetition of the loop. The other approach for analyzing 

"while" loop is to treat them as recursive algorithms. 

Algorithm: 

1. 1. [Initialize] Set k: =1, LOC: =1 and MAX: = DA

TA [1]   

2. 2. Repeat steps 3 and 4 while K≤N   

3. 3.  if MAX<DATA [k],then:   

4.     Set LOC: = K and MAX: = DATA [k]   

5. 4. Set k: = k+1   

6.    [End of step 2 loop]   

7. 5. Write: LOC, MAX   

8. 6. EXIT   
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Example: 

The running time of algorithm array Max of computing 

the maximum element in an array of n integer is O (n). 

Solution: 

 

 

 

 

1.    array Max (A, n)   

2. 1. Current max ← A [0]   

3. 2. For i ←  1 to n-1   

4. 3. do if current max < A [i]   

5. 4. then  current max ← A [i]   

6. 5. return current max.   

The number of primitive operation t (n) executed by this 

algorithm is at least. 

 

 

 

 

1. 2 + 1 + n +4 (n-1) + 1=5n   

2. 2 + 1 + n + 6 (n-1) + 1=7n-2   
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The best case T(n) =5n occurs when A [0] is the 

maximum element. The worst case T(n) = 7n-2 occurs 

when element are sorted in increasing order. 

We may, therefore, apply the big-Oh definition with c=7 

and n0=1 and conclude the running time of this is O (n). 

 

Asymptotic Notation 

Asymptotic Notation is used to describe the running 

time of an algorithm - how much time an algorithm 

takes with a given input, n.  

                                            Asymptotic Notation is a 

way of comparing function that ignores constant factors 

and small input sizes. Three notations are used to 

calculate the running time complexity of an algorithm: 

There are three different notations: big O, big Theta 

(Θ), and big Omega (Ω).  

Why is Asymptotic Notation Important? 

1. They give simple characteristics of an algorithm's 

efficiency. 

2. They allow the comparisons of the performances of 

various algorithms. 

 1) Big-O Notation 

The Big-O notation describes the worst-case running 

time of a program. We compute the Big-O of an 

algorithm by counting how many iterations an 

https://topperworld.in/


Topperworld.in 

algorithm will take in the worst-case scenario with an 

input of N. We typically consult the Big-O because we 

must always plan for the worst case. For example, 

O(log n) describes the Big-O of a binary search 

algorithm. 

1. f (n) ⩽ k.g (n)f(n)⩽k.g(n) for n>n0n>n0 in all case

    

 

 

 

For Example: 
 

1. 1. 3n+2=O(n) as 3n+2≤4n for all n≥2   

2. 2. 3n+3=O(n) as 3n+3≤4n for all n≥3   

Hence, the complexity of f(n) can be represented as O (g 

(n)) 

2) Big-Ω Notation 

Big-Ω (Omega) describes the best running time of a 

program. We compute the big-Ω by counting how many 

iterations an algorithm will take in the best-case 
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scenario based on an input of N. For example, a Bubble 

Sort algorithm has a running time of Ω(N) because in 

the best case scenario the list is already sorted, and the 

bubble sort will terminate after the first iteration. 

 

F (n) ≥ k* g (n) for all n, n≥ n0 

 

 

For Example: 

  f (n) =8n2+2n-3≥8n2-3 

        =7n2+(n2-3)≥7n2 (g(n)) 

Thus, k1=7 

Hence, the complexity of f (n) can be represented as Ω 

(g (n)) 

3. Theta (θ) Notation: The function f (n) = θ (g (n)) 

[read as "f is the theta of g of n"] if and only if there exists 

positive constant k1, k2 and k0 such that 

  k1 * g (n) ≤ f(n)≤ k2 g(n)for all n, n≥ n0 
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3n+2= θ (n) as 3n+2≥3n and 3n+2≤ 4n, for n 

    k1=3,k2=4, and n0=2 

Hence, the complexity of f (n) can be represented as θ 

(g(n)). 

Recurrence Relation 

A recurrence is an equation or inequality that describes a 

function in terms of its values on smaller inputs. To solve 

a Recurrence Relation means to obtain a function defined 

on the natural numbers that satisfy the recurrence. 

For Example, the Worst Case Running Time T(n) of the 

MERGE SORT Procedures is described by the 

recurrence. 

T (n) = θ (1) if n=1 

 2T  + θ (n) if n>1 
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There are four methods for solving Recurrence: 

1. Substitution Method 

 

2. Iteration Method 

 

3. Recursion Tree Method 

 

4. Master Method 

1. Substitution Method: 

The Substitution Method Consists of two main steps: 

 

1. Guess the Solution. 

2. Use the mathematical induction to find the 

boundary condition and shows that the guess is 

correct. 

For Example1 Solve the equation by Substitution 

Method. 

 T (n) = T  + n 

We have to show that it is asymptotically bound by O 

(log n). 
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Solution: 

For T (n) = O (log n) 

We have to show that for some constant c 

 

 

 

 

1. T (n) ≤c logn.   

Put this in given Recurrence Equation. 

 T (n) ≤c log + 1 

   ≤c log + 1 = c logn-clog2 2+1 

   ≤c logn for c≥1 

Thus T (n) =O logn. 

Example2. Consider the Recurrence 

T (n) = 2T + n n>1 

Find an Asymptotic bound on T. 

Solution: 
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2. Iteration Methods 

It means to expand the recurrence and express it as a 

summation of terms of n and initial condition. 

Example1: Consider the Recurrence 

 

 

1. T (n) = 1  if n=1   

2.       = 2T (n-1) if n>1  
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3) Recurrence Tree Method: In this method, 

we draw a recurrence tree and calculate the time 

taken by every level of tree. Finally, we sum the 

work done at all levels. To draw the recurrence 

tree, we start from the given recurrence and keep 

drawing till we find a pattern among levels. The 

pattern is typically a arithmetic or geometric 

series.  

1. In general, we consider the second term in recurrence 

as root. 

2. It is useful when the divide & Conquer algorithm is 

used. 
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3. It is sometimes difficult to come up with a good guess. 

In Recursion tree, each root and child represents the cost 

of a single subproblem. 

 

 

For example consider the recurrence relation 

Consider T (n) = 2T  + n2 

We have to obtain the asymptotic bound using recursion 

tree method. 

Solution: The Recursion tree for the above recurrence is 
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Example 3: Consider the following recurrence 

 
 

Obtain the asymptotic bound using recursion tree 

method. 

Solution: The given Recurrence has the following 

recursion tree 
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When we add the values across the levels of the recursion 

trees, we get a value of n for every level. The longest path 

from the root to leaf is 
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4) Master Method 

The Master Method is used for solving the following 

types of recurrence 

T (n) = a T + f (n) with a≥1 and b≥1 be constant & f(n) 

be a function and can be interpreted as 

Let T (n) is defined on non-negative integers by the 

recurrence. 

 

T (n) = a T + f (n) 

In the function to the analysis of a recursive algorithm, 

the constants and function take on the following 

significance: 

 

o n is the size of the problem. 

o a is the number of subproblems in the recursion. 

o n/b is the size of each subproblem. (Here it is 

assumed that all subproblems are essentially the 

same size.) 

o f (n) is the sum of the work done outside the 

recursive calls, which includes the sum of dividing 

the problem and the sum of combining the solutions 

to the subproblems. 
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o It is not possible always bound the function 

according to the requirement, so we make three 

cases which will tell us what kind of bound we can 

apply on the function 

Priority queue 

A priority queue is a special type of queue in which each element is associated 

with a priority value. And, elements are served on the basis of their priority. That 

is, higher priority elements are served first. 

However, if elements with the same priority occur, they are served according to 

their order in the queue. 

Assigning Priority Value 

Generally, the value of the element itself is considered for assigning the priority. 

For example, 

The element with the highest value is considered the highest priority element. 

However, in other cases, we can assume the element with the lowest value as the 

highest priority element. 

We can also set priorities according to our needs. 
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Removing  highest Priority Element 

 

 

Implementation of Priority Queue 

Priority queue can be implemented using an array, a linked list, a heap data 

structure, or a binary search tree. Among these data structures, heap data structure 

provides an efficient implementation of priority queues. 

Hence, we will be using the heap data structure to implement the priority queue in 

this tutorial. A max-heap is implement is in the following operations. If you want 

to learn more about it, please visit max-heap and mean-heap. 

A comparative analysis of different implementations of priority queue is given 

below. 

https://topperworld.in/
https://www.programiz.com/dsa/heap-sort#heap


Topperworld.in 

 

Operations peek insert delete 

Linked List O(1) O(n) O(1) 

Binary Heap O(1) O(log n) O(log n) 

Binary Search Tree O(1) O(log n) O(log n) 

 

Priority Queue Operations 

Basic operations of a priority queue are inserting, removing, and peeking elements. 

. Inserting an Element into the Priority Queue 

Inserting an element into a priority queue (max-heap) is done by the following 

steps. 

• Insert the new element at the end of the tree.

 

 
Heapify the tree. 
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Heapify after insertion 

 

 

Algorithm for insertion of an element into priority queue (max-heap) 

If there is no node,  

  create a newNode. 

else (a node is already present) 

  insert the newNode at the end (last node from left to right.) 

   

heapify the array 

For Min Heap, the above algorithm is modified so that parentNode is always smaller 

than newNode. 

 

 

2. Deleting an Element from the Priority Queue 

Deleting an element from a priority queue (max-heap) is done as follows: 
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• Select the element to be deleted.

Select the element to be deleted 

 

• Swap it with the last element. Swap 

with the last leaf node element 

• Remove the last element. Remove 

the last element leaf 
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• Heapify the tree. Heapify the 

priority queue 

Algorithm for deletion of an element in the priority queue (max-heap) 

If nodeToBeDeleted is the leafNode 

  remove the node 

Else swap nodeToBeDeleted with the lastLeafNode 

  remove noteToBeDeleted 

    

heapify the array 

For Min Heap, the above algorithm is modified so that the both childNodes are 

smaller than currentNode. 

 

3. Peeking from the Priority Queue (Find max/min) 

Peek operation returns the maximum element from Max Heap or minimum 

element from Min Heap without deleting the node. 

For both Max heap and Min Heap 
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return rootNode 

 

4. Extract-Max/Min from the Priority Queue 

Extract-Max returns the node with maximum value after removing it from a Max 

Heap whereas Extract-Min returns the node with minimum value after removing it 

from Min Heap. 

 

Priority Queue Implementations in Python, Java, C, and 

C++ 

Python 

Java 

C 

C++ 

# Priority Queue implementation in Python 

 

 

# Function to heapify the tree 

def heapify(arr, n, i): 

    # Find the largest among root, left child and right child 

    largest = i 

    l = 2 * i + 1 

    r = 2 * i + 2 

 

    if l < n and arr[i] < arr[l]: 

        largest = l 

 

    if r < n and arr[largest] < arr[r]: 

        largest = r 
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    # Swap and continue heapifying if root is not largest 

    if largest != i: 

        arr[i], arr[largest] = arr[largest], arr[i] 

        heapify(arr, n, largest) 

 

 

# Function to insert an element into the tree 

def insert(array, newNum): 

    size = len(array) 

    if size == 0: 

        array.append(newNum) 

    else: 

        array.append(newNum) 

        for i in range((size // 2) - 1, -1, -1): 

            heapify(array, size, i) 

 

 

# Function to delete an element from the tree 

def deleteNode(array, num): 

    size = len(array) 

    i = 0 

    for i in range(0, size): 

        if num == array[i]: 

            break 

 

    array[i], array[size - 1] = array[size - 1], array[i] 

 

    array.remove(size - 1) 

 

    for i in range((len(array) // 2) - 1, -1, -1): 

        heapify(array, len(array), i) 

 

 

arr = [] 

 

insert(arr, 3) 

insert(arr, 4) 

insert(arr, 9) 

insert(arr, 5) 

insert(arr, 2) 

 

print ("Max-Heap array: " + str(arr)) 

 

deleteNode(arr, 4) 

print("After deleting an element: " + str(arr)) 
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Heap Sort 

Binary Heap: 

Binary Heap is an array object can be viewed as 

Complete Binary Tree. Each node of the Binary Tree 

corresponds to an element in an array. 

1. Length [A],number of elements in array 

2. Heap-Size[A], number of elements in a heap stored 

within array A. 

The root of tree A [1] and gives index 'i' of a node that 

indices of its parents, left child, and the right child can be 

computed. 

 

 

 

 

1. PARENT (i)   

2.     Return floor (i/2)   

3. LEFT (i)   

4.     Return 2i   

5. RIGHT (i)   

6.     Return 2i+1   
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Representation of an array of the above figure is given below: 

 

 

The index of 20 is 1 

48.3M 

953 

Exception Handling in Java - Javatpoint 

Next 

Stay 

To find the index of the left child, we calculate 1*2=2 

This takes us (correctly) to the 14. 

Now, we go right, so we calculate 2*2+1=5 
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This takes us (again, correctly) to the 6. 

Now, 4's index is 7, we want to go to the parent, so we 

calculate 7/2 =3 which takes us to the 17. 

Heap Property: 

A binary heap can be classified as Max Heap or Min 

Heap 

1. Max Heap: In a Binary Heap, for every node I other 

than the root, the value of the node is greater than or 

equal to the value of its highest child 

 

 

 

 

1. A [PARENT (i) ≥A[i]   

Thus, the highest element in a heap is stored at the root. 

Following is an example of MAX-HEAP 
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2. MIN-HEAP: In MIN-HEAP, the value of the node is 

lesser than or equal to the value of its lowest child. 

 

 

 

 

1. A [PARENT (i) ≤A[i]   
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Heapify Method: 

1. Maintaining the Heap Property: Heapify is a 

procedure for manipulating heap Data Structure. It is 

given an array A and index I into the array. The subtree 

rooted at the children of A [i] are heap but node A [i] 

itself may probably violate the heap property i.e. A [i] < 

A [2i] or A [2i+1]. The procedure 'Heapify' manipulates 

the tree rooted as A [i] so it becomes a heap. 

MAX-HEAPIFY (A, i) 

 1. l ← left [i] 

 2. r ← right [i] 

 3. if l≤ heap-size [A] and A[l] > A [i] 

 4. then largest ← l 

 5. Else largest ← i 

 6. If r≤ heap-size [A] and A [r] > A[largest] 

 7. Then largest ← r 

 8. If largest ≠ i 

 9. Then exchange A [i]    A [largest] 

 10. MAX-HEAPIFY (A, largest) 

Analysis: 

The maximum levels an element could move up are Θ 

(log n) levels. At each level, we do simple comparison 

which O (1). The total time for heapify is thus O (log n). 

Building a Heap: 

BUILDHEAP (array A, int n) 
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 1 for i ← n/2 down to 1 

 2 do 

 3 HEAPIFY (A, i, n) 

HEAP-SORT ALGORITHM: 

HEAP-SORT (A) 

 1. BUILD-MAX-HEAP (A) 

 2. For I ← length[A] down to Z 

 3. Do exchange A [1] ←→ A [i] 

 4. Heap-size [A] ← heap-size [A]-1 

 5. MAX-HEAPIFY (A,1) 

Analysis: Build max-heap takes O (n) running time. The 

Heap Sort algorithm makes a call to 'Build Max-Heap' 

which we take O (n) time & each of the (n-1) calls to 

Max-heap to fix up a new heap. We know 'Max-Heapify' 

takes time O (log n) 

The total running time of Heap-Sort is O (n log n). 

 

Example: Illustrate the Operation of BUILD-MAX-

HEAP on the array. 
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1. A = (5, 3, 17, 10, 84, 19, 6, 22, 9)   

Solution: Originally: 

 

 

 

 

1. Heap-Size (A) =9, so first we call MAX-

HEAPIFY (A, 4)   

2. And I = 4.5= 4 to 1   

 

 

 

 

 

1. After MAX-HEAPIFY (A, 4) and i=4   

2.  L ← 8, r ← 9   

3.  l≤ heap-size[A] and A [l] >A [i]   

4.  8 ≤9 and 22>10   

5.  Then Largest ← 8   
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6.  If r≤ heap-size [A] and A [r] > A [largest]   

7.   9≤9 and 9>22   

8.  If largest (8) ≠4   

9.  Then exchange A [4] ←→ A [8]   

10.  MAX-HEAPIFY (A, 8)   

 

 

 

 

 

1. After MAX-HEAPIFY (A, 3) and i=3   

2. l← 6, r ← 7   

3. l≤ heap-size[A] and A [l] >A [i]   

4. 6≤ 9 and 19>17   

5. Largest ← 6   

6. If r≤ heap-size [A] and A [r] > A [largest]   

7. 7≤9 and 6>19   

8. If largest (6) ≠3   
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9. Then Exchange A [3] ←→ A [6]   

10. MAX-HEAPIFY (A, 6)   

 

 

 

 

 

1. After MAX-HEAPIFY (A, 2) and i=2   

2. l ← 4, r ← 5   

3. l≤ heap-size[A] and A [l] >A [i]   

4. 4≤9 and 22>3   

5. Largest ← 4   

6. If r≤ heap-size [A] and A [r] > A [largest]   

7. 5≤9 and 84>22   

8. Largest ← 5   

9. If largest (4) ≠2   
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10. Then Exchange A [2] ←→ A [5]   

11. MAX-HEAPIFY (A, 5)   

 

 

 

 

 

1. After MAX-HEAPIFY (A, 1) and i=1   

2. l ← 2, r ← 3   

3. l≤ heap-size[A] and A [l] >A [i]   

4. 2≤9 and 84>5   

5. Largest ← 2   

6. If r≤ heap-size [A] and A [r] > A [largest]   

7. 3≤9 and 19<84   

8. If largest (2) ≠1   

9. Then Exchange A [1] ←→ A [2]   

10. MAX-HEAPIFY (A, 2)   
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Priority Queue: 

As with heaps, priority queues appear in two forms: max-

priority queue and min-priority queue. 

A priority queue is a data structure for maintaining a set 

S of elements, each with a combined value called a key. 

A max-priority queue guides the following operations: 

INSERT(S, x): inserts the element x into the set S, 

which is proportionate to the operation S=S∪[x]. 

MAXIMUM (S) returns the element of S with the 

highest key. 

EXTRACT-MAX (S) removes and returns the element 

of S with the highest key. 
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INCREASE-KEY(S, x, k) increases the value of 

element x's key to the new value k, which is considered 

to be at least as large as x's current key value. 

Let us discuss how to implement the operations of a max-

priority queue. The procedure HEAP-MAXIMUM 

consider the MAXIMUM operation in θ (1) time. 

HEAP-MAXIMUM (A) 

1. return A [1] 

The procedure HEAP-EXTRACT-MAX implements the 

EXTRACT-MAX operation. It is similar to the for loop 

of Heap-Sort procedure. 

HEAP-EXTRACT-MAX (A) 

 1 if A. heap-size < 1 

 2 error "heap underflow" 

 3 max ← A [1] 

 4 A [1] ← A [heap-size [A]] 

 5 heap-size [A] ← heap-size [A]-1 

 6 MAX-HEAPIFY (A, 1) 

 7 return max 

The procedure HEAP-INCREASE-KEY implements the 

INCREASE-KEY operation. An index i into the array 

identify the priority-queue element whose key we wish 

to increase. 

HEAP-INCREASE-KEY.A, i, key) 
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 1 if key < A[i] 

 2 errors "new key is smaller than current key" 

 3 A[i] = key  

 4 while i>1 and A [Parent (i)] < A[i]  

 5 exchange A [i] with A [Parent (i)]  

 6 i =Parent [i] 

The running time of HEAP-INCREASE-KEY on an n-

element heap is O (log n) since the path traced from the 

node updated in line 3 to the root has length O (log n). 

The procedure MAX-HEAP-INSERT implements the 

INSERT operation. It takes as an input the key of the new 

item to be inserted into max-heap A. The procedure first 

expands the max-heap by calculating to the tree a new 

leaf whose key is - ∞. Then it calls HEAP-INCREASE-

KEY to set the key of this new node to its right value and 

maintain the max-heap property 

MAX-HEAP-INSERT (A, key) 

 1 A. heap-size = A. heap-size + 1  

 2 A [A. heap-size] = - ∞ 

 3 HEAP-INCREASE-KEY (A, A. heap-size, key) 

The running time of MAX-HEAP-INSERT on an n-

element heap is O (log n). 

Example: Illustrate the operation of HEAP-EXTRACT-

MAX on the heap 
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1. A= (15,13,9,5,12,8,7,4,0,6,2,1)   

Fig: Operation of HEAP-INCREASE-KEY 

 

Fig: (a) 

 

 

In this figure, that max-heap with a node whose index is 

'i' heavily shaded 
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Fig: (b) 

 

 

In this Figure, this node has its key increased to 15. 

 

Fig: (c) 
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After one iteration of the while loop of lines 4-6, the node 

and its parent have exchanged keys, and the index i 

moves up to the parent. 

 

Fig: (d) 

 

 

The max-heap after one more iteration of the while loops, 

the A [PARENT (i) ≥A (i)] the max-heap property now 

holds and the procedure terminates. 

Heap-Delete: 

Heap-DELETE (A, i) is the procedure, which deletes the 

item in node 'i' from heap A, HEAP-DELETE runs in O 

(log n) time for n-element max heap. 
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HEAP-DELETE (A, i) 

 1. A [i] ← A [heap-size [A]] 

 2. Heap-size [A] ← heap-size [A]-1 

 3. MAX-HEAPIFY (A, i) 

 

Quick sort 

It is an algorithm of Divide & Conquer type. 

Divide: Rearrange the elements and split arrays into two 

sub-arrays and an element in between search that each 

element in left sub array is less than or equal to the 

average element and each element in the right sub- array 

is larger than the middle element. 

Conquer: Recursively, sort two sub arrays. 

Combine: Combine the already sorted array. 

• Quick Sort is a famous sorting algorithm. 

• It sorts the given data items in ascending order. 

• It uses the idea of divide and conquer approach. 

• It follows a recursive algorithm 

 

Algorithm: 

1. QUICKSORT (array A, int m, int n)    

2.  1 if (n > m)    

3.  2 then    

4.  3 i ← a random index from [m,n]    
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5.  4 swap A [i] with A[m]    

6.  5 o ← PARTITION (A, m, n)    

7.  6 QUICKSORT (A, m, o - 1)   

8.  7 QUICKSORT (A, o + 1, n)   

Partition Algorithm: 

Partition algorithm rearranges the sub arrays in a place. 

1. PARTITION (array A, int m, int n)    

2.  1 x ← A[m]    

3.  2 o ← m    

4.  3 for p ← m + 1 to n   

5.  4 do if (A[p] < x)    

6.  5 then o ← o + 1    

7.  6 swap A[o] with A[p]   

8.  7 swap A[m] with A[o]    

9.  8 return o   

Figure: shows the execution trace partition algorithm 
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Consider the following array has to be sorted in 

ascending order using quick sort algorithm- 

  

 

  

Quick Sort Algorithm works in the following steps- 
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Step-01: 

  

Initially- 

• Left and Loc (pivot) points to the first element of 

the array. 

• Right points to the last element of the array. 

  

So to begin with, we set loc = 0, left = 0 and right = 5 

as- 

  

 

  

Step-02: 

  

Since loc points at left, so algorithm starts 

from right and move towards left. 

As a[loc] < a[right], so algorithm moves right one 

position towards left as- 
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Now, loc = 0, left = 0 and right = 4. 

  

Step-03: 

  

Since loc points at left, so algorithm starts 

from right and move towards left. 

As a[loc] > a[right], so algorithm swaps a[loc] and 

a[right] and loc points at right as- 
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Now, loc = 4, left = 0 and right = 4. 

  

Step-04: 

  

Since loc points at right, so algorithm starts 

from left and move towards right. 

As a[loc] > a[left], so algorithm moves left one position 

towards right as- 

  

 

  

Now, loc = 4, left = 1 and right = 4. 

  

Step-05: 

  

Since loc points at right, so algorithm starts 

from left and move towards right. 
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As a[loc] > a[left], so algorithm moves left one position 

towards right as- 

  

 

  

Now, loc = 4, left = 2 and right = 4. 

  

Step-06: 

  

Since loc points at right, so algorithm starts 

from left and move towards right. 

As a[loc] < a[left], so we algorithm swaps a[loc] and 

a[left] and loc points at left as- 
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Now, loc = 2, left = 2 and right = 4. 

  

Step-07: 

  

Since loc points at left, so algorithm starts 

from right and move towards left. 

As a[loc] < a[right], so algorithm moves right one 

position towards left as- 
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Now, loc = 2, left = 2 and right = 3. 

  

Step-08: 

  

Since loc points at left, so algorithm starts 

from right and move towards left. 

As a[loc] > a[right], so algorithm swaps a[loc] and 

a[right] and loc points at right as- 

  

 

  

Now, loc = 3, left = 2 and right = 3. 

  

Step-09: 

  

Since loc points at right, so algorithm starts 

from left and move towards right. 
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As a[loc] > a[left], so algorithm moves left one position 

towards right as- 

  

 

  

Now, loc = 3, left = 3 and right = 3. 

  

Now, 

• loc, left and right points at the same element. 

• This indicates the termination of procedure. 

• The pivot element 25 is placed in its final position. 

• All elements to the right side of element 25 are 

greater than it. 

• All elements to the left side of element 25 are 

smaller than it. 
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Now, quick sort algorithm is applied on the left and 

right sub arrays separately in the similar manner. 

  

Quick Sort Analysis- 

  

• To find the location of an element that splits the 

array into two parts, O(n) operations are required. 

• This is because every element in the array is 

compared to the partitioning element. 

• After the division, each section is examined 

separately. 

• If the array is split approximately in half (which is 

not usually), then there will be log2n splits. 

• Therefore, total comparisons required are f(n) = n x 

log2n = O(nlog2n). 

Advantages of Quick Sort- 
  

The advantages of quick sort algorithm are- 

• Quick Sort is an in-place sort, so it requires no 

temporary memory. 

• Quick Sort is typically faster than other algorithms. 
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(because its inner loop can be efficiently implemented 

on most architectures) 

• Quick Sort tends to make excellent usage of the 

memory hierarchy like virtual memory or caches. 

• Quick Sort can be easily parallelized due to its 

divide and conquer nature. 
  

Disadvantages of Quick Sort- 

  

The disadvantages of quick sort algorithm are- 

• The worst case complexity of quick sort is O(n2). 

• This complexity is worse than O(nlogn) worst case 

complexity of algorithms like merge sort, heap 

sort etc. 

• It is not a stable sort i.e. the order of equal elements 

may not be preserved. 

 

 

Time Complexity Analysis of Quick Sort 
 

The average time complexity of quick sort is O(N 

log(N)). 

 

At each step, the input of size N is broken into two parts 

say J and N-J. 
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T(N) = T(J) + T(N-J) + M(N) 

The intuition is: 

Time Complexity for N elements =  

        Time Complexity for J elements +  

        Time Complexity for N-J elements + 

        Time Complexity for finding the pivot 

where 

• T(N) = Time Complexity of Quick Sort for input of 

size N. 

• T(J) = Time Complexity of Quick Sort for input of 

size J. 

• T(N-J) = Time Complexity of Quick Sort for input 

of size N-J. 

• M(N) = Time Complexity of finding the pivot 

element for N elements. 

Quick Sort performs differently based on: 

• How we choose the pivot? M(N) time 

• How we divide the N elements -> J and N-J where 

J is from 0 to N-1 

On solving for T(N), we will find the time complexity 

of Quick Sort. 

https://topperworld.in/


Topperworld.in 

Best case Time Complexity of Quick Sort 

 

• O(Nlog(N)) 

• the best case of quick sort is when we will select 

pivot as a mean element. 

• In this case the recursion will look as shown in 

diagram, as we can see in diagram the height of 

tree is logN and in each level we will be traversing 

to all the elements with total operations will be 

logN * N 

• as we have selected mean element as pivot then the 

array will be divided in branches of equal size so 

that the height of the tree will be mininum 

• pivot for each recurssion is represented using blue 

color 

• time complexity will be O(NlogN) 

Explanation 

Lets T(n) be the time complexity for best cases 

n = total number of elements 

then 

T(n) = 2*T(n/2) + constant*n 

2*T(n/2) is because we are dividing array into two array of equal size 

constant*n is because we will be traversing elements of array in each level of tree 
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therefore, 

T(n) = 2*T(n/2) + constant*n 

further we will devide arrai in to array of equalsize so 

T(n) = 2*(2*T(n/4) + constant*n/2) + constant*n == 4*T(n/4) + 2*constant*n 

 

for this we can say that 

T(n) = 2^k * T(n/(2^k)) + k*constant*n 

then n = 2^k 

k = log2(n) 

 

therefore, 

T(n) = n * T(1) + n*logn = O(n*log2(n)) 

Worst Case Time Complexity of Quick Sort 

 

• O(N^2) 

• This will happen when we will when our array will 

be sorted and we select smallest or largest indexed 

element as pivot 

as we can see in diagram we are always selecting 

pivot as corner index elements 

so height of the tree will be n and in top node we 

will be doing N operations 

then n-1 and so on till 1 

Explanation 

lets T(n) ne total time complexity for worst case 
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n = total number of elements 

 

T(n) = T(n-1) + constant*n 

as we are dividing array into two parts one consist of single element and other of n-1 

and we will traverse individual array 

 

T(n) = T(n-2) + constant*(n-1) + constant*n =  T(n-2) + 2*constant*n - constant 

T(n) = T(n-3) + 3*constant*n - 2*constant - constant 

T(n) = T(n-k) + k*constant*n - (k-1)*constant ..... - 2*constant - constant 

 

T(n) = T(n-k) + k*constant*n - constant*[(k-1) ....  + 3 + 2 + 1] 

T(n) = T(n-k) + k*n*constant - constant*[k*(k-1)/2] 

put n=k 

T(n) = T(0) + constant*n*n - constant*[n*(n-1)/2] 

removing constant terms 

T(n) = n*n - n*(n-1)/2 

T(n) = O(n^2) 

• we can reduce complexity for worst case by 

randomly picking pivot instead of selecting start or 

end elements 

Average Case Time Complexity of Quick Sort 

• O(Nlog(N)) 

• the overall average case for the quick sort is this 

which we will get by taking average of all 

complexities 

Explanation 

lets T(n) be total time taken 

 

then for average we will consider random element as pivot 

lets index i be pivot 

 

then time complexity will be 

T(n) = T(i) + T(n-i) 
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T(n) =  1/n *[\sum_{i=1}^{n-1} T(i)] + 1/n*[\sum_{i=1}^{n-1} T(n-i)] 

 

 

As [\sum_{i=1}^{n-1} T(i)] and [\sum_{i=1}^{n-1} T(n-i)] equal likely functions 

therefore 

T(n) = 2/n*[\sum_{i=1}^{n-1} T(i)] 

 

multiply both side by n 

n*T(n) = 2*[\sum_{i=1}^{n-1} T(i)]      ............(1) 

 

put n = n-1 

  (n-1)*T(n-1) = 2*[\sum_{i=1}^{n-2} T(i)]      ............(2) 

 

substract 1 and 2 

then we will get 

  n*T(n) - (n-1)*T(n-1) = 2*T(n-1) + c*n^2 + c*(n-1)^2 

  n*T(n) = T(n-1)[2+n-1] + 2*c*n - c 

  n*T(n) = T(n-1)*(n+1) + 2*c*n [removed c as it was constant] 

 

divide both side by n*(n+1), 

  T(n)/(n+1) = T(n-1)/n + 2*c/(n+1) .............(3) 

 

put n = n-1, 

  T(n-1)/n = T(n-2)/(n-1) + 2*c/n   ............(4) 

 

put n = n-2, 

  T(n-2)/n = T(n-3)/(n-2) + 2*c/(n-1)   ............(5) 

 

by putting 4 in 3 and then 3 in 2 we will get 

  T(n)/(n+1) = T(n-2)/(n-1) + 2*c/(n-1) + 2*c/n + 2*c/(n+1) 

 

also we can find equation for T(n-2) by putting n = n-2 in (3) 

 

at last we will get 

 

  T(n)/(n+1) = T(1)/2 + 2*c * [1/(n-1) + 1/n + 1/(n+1) + .....] 
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  T(n)/(n+1) = T(1)/2 + 2*c*log(n) + C 

 

  T(n) = 2*c*log(n) * (n+1) 

 

now by removing constants, 

 

  T(n) = log(n)*(n+1) 

 

therefore, 

 

  T(n) = O(n*log(n)) 

 

Space Complexity 

• O(N) 

• as we are not creating any container other then 

given array therefore Space complexity will be in 

order of N 

 

The derivation is based on the following notation: 

T(N) = Time Complexity of Quick Sort for input of size 

N. 

 

Recursion Tree Method 

The recursion tree method is commonly used in cases 

where the problem gets divided into smaller problems, 

typically of the same size. A recurrence tree is drawn, 

branching until the base case is reached. Then, we sum 

the total time taken at all levels in order to derive the 

overall time complexity. 
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For example, consider the following example: 

T(n) = aT(n/b) + cn 

Here, the problem is getting split into a subproblems, 

each of which has a size of n/b. Hence, the first level of 

the recurrence tree would look as follows: 

 

 
 

Example 

Example: T(n) = 2T(n/2) + n 

 

In this problem, one can observe that the problem is 

getting split into two problems of half the initial size. 

Further the additional cost here equals the size. Hence, 

after the first division, the recursion tree will have two 

child nodes with input size n/2. We then proceed in this 

manner until the final input size becomes 1.  

                      Therefore, the final recursion tree will 

look as follows (note that each node contains only the 

extra cost that is taken) : 
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As the recursion tree is complete, it remains to calculate 

the total sum of the entries. For that, we first need to 

determine the number of levels in the recursion tree. 

Since each level of the tree splits each of the nodes in 

that level to half the size of their parents, one can 

conclude that the total number of levels here is log2n. 

The next thing we note here is that in each level, the 

sum of the nodes is n. Therefore, the overall time 

complexity is given by: 

T(n) = n + n + .... log2n times 

= n ( 1 + 1 + ....log2n times) 

= n log2n 

= θ(n log2n) 

Therefore, the overall time complexity of the operation 

with the given recurrence equation is given by θ(n 

log2n). 
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Example 1 

 Consider T (n) = 2T  + n2 

We have to obtain the asymptotic bound using recursion 

tree method. 

Solution: The Recursion tree for the above recurrence is 
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 Example 2: Consider the following recurrence 

 T (n) = 4T  +n  

Obtain the asymptotic bound using recursion tree 

method. 

Solution: The recursion trees for the above recurrence 
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Example 3: Consider the following recurrence 

 
 

Obtain the asymptotic bound using recursion tree 

method. 

Solution: The given Recurrence has the following 

recursion tree 

 
 

When we add the values across the levels of the recursion trees, we get a value of n for every 

level. The longest path from the root to leaf is 
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Master Theorem- 

 

Master’s theorem solves recurrence relations of the 

form 

 

 
 

Here, a >= 1, b > 1, k >= 0 and p is a real number. 

 

Master Theorem Cases- 
  

To solve recurrence relations using Master’s theorem, 

we compare a with bk
. 

 

hen, we follow the following cases- 
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Case-01: 

  

If a > bk, then T(n) = θ (nlog
b
a) 

  

Case-02: 

  

If a = bk and 

• If p < -1, then T(n) = θ (nlog
b
a) 

• If p = -1, then T(n) = θ (nlog
b
a.log2n) 

• If p > -1, then T(n) = θ (nlog
b
a.logp+1n) 

  

Case-03: 

  

If a < bk and 

• If p < 0, then T(n) = O (nk) 

• If p >= 0, then T(n) = θ (nklogpn) 
  

PRACTICE PROBLEMS BASED ON MASTER 

THEOREM- 
  

Problem-01: 
  

Solve the following recurrence relation using Master’s 

theorem- 

T(n) = 3T(n/2) + n2 
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Solution- 
  

We compare the given recurrence relation with T(n) = 

aT(n/b) + θ (nklogpn). 

Then, we have- 

a = 3 

b = 2 

k = 2 

p = 0 

  

Now, a = 3 and bk = 22 = 4. 

Clearly, a < bk. 

So, we follow case-03. 

  

Since p = 0, so we have- 

T(n) = θ (nklogpn) 

T(n) = θ (n2log0n) 

  

Thus, 

T(n) = θ (n2) 
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Problem-02: 
  

Solve the following recurrence relation using Master’s 

theorem- 

T(n) = 2T(n/2) + nlogn 

  

Solution- 
  

We compare the given recurrence relation with T(n) = 

aT(n/b) + θ (nklogpn). 

Then, we have- 

a = 2 

b = 2 

k = 1 

p = 1 

  

Now, a = 2 and bk = 21 = 2. 

Clearly, a = bk. 

So, we follow case-02. 

  

Since p = 1, so we have- 

T(n) = θ (nlog
b

a.logp+1n) 

T(n) = θ (nlog
2

2.log1+1n) 
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Thus, 

T(n) = θ (nlog2n) 

  

Problem-03: 
  

Solve the following recurrence relation using Master’s theorem- 

T(n) = 2T(n/4) + n0.51 

  

Solution- 
  

We compare the given recurrence relation with T(n) = 

aT(n/b) + θ (nklogpn). 

Then, we have- 

a = 2 

b = 4 

k = 0.51 

p = 0 

  

Now, a = 2 and bk = 40.51 = 2.0279. 

Clearly, a < bk. 

So, we follow case-03. 

  

Since p = 0, so we have- 
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T(n) = θ (nklogpn) 

T(n) = θ (n0.51log0n) 

  

Thus, 

T(n) = θ (n0.51) 

  

Problem-04: 

  

Solve the following recurrence relation using Master’s 

theorem- 

T(n) = √2T(n/2) + logn 

  

Solution- 

  

We compare the given recurrence relation with T(n) = 

aT(n/b) + θ (nklogpn). 

Then, we have- 

a = √2 

b = 2 

k = 0 

p = 1 
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Now, a = √2 = 1.414 and bk = 20 = 1. 

Clearly, a > bk. 

So, we follow case-01. 

  

So, we have- 

T(n) = θ (nlog
b
a) 

T(n) = θ (nlog
2
√2) 

T(n) = θ (n1/2) 

  

Thus, 

T(n) = θ (√n) 

  

Problem-05: 

  

Solve the following recurrence relation using Master’s 

theorem- 

T(n) = 8T(n/4) – n2logn 

  

Solution- 

  

• The given recurrence relation does not correspond 

to the general form of Master’s theorem. 
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• So, it can not be solved using Master’s theorem. 

  

Problem-06: 

  

Solve the following recurrence relation using Master’s 

theorem- 

T(n) = 3T(n/3) + n/2 

  

Solution- 

  

• We write the given recurrence relation as T(n) = 

3T(n/3) + n. 

• This is because in the general form, we have θ for 

function f(n) which hides constants in it. 

• Now, we can easily apply Master’s theorem. 

  

We compare the given recurrence relation with T(n) = 

aT(n/b) + θ (nklogpn). 

Then, we have- 

a = 3 

b = 3 

k = 1 

p = 0 
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Now, a = 3 and bk = 31 = 3. 

Clearly, a = bk. 

So, we follow case-02. 

  

Since p = 0, so we have- 

T(n) = θ (nlog
b

a.logp+1n) 

T(n) = θ (nlog
3

3.log0+1n) 

T(n) = θ (n1.log1n) 

  

Thus, 

T(n) = θ (nlogn) 

  

Problem-07: 

  

Form a recurrence relation for the following code and 

solve it using Master’s theorem- 

  

A(n) 

{ 

if(n<=1) 

return 1; 
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else 

return A(√n); 

} 

  

Solution- 

  

• We write a recurrence relation for the given code as 

T(n) = T(√n) + 1. 

• Here 1 = Constant time taken for comparing and 

returning the value. 

• We can not directly apply Master’s Theorem on 

this recurrence relation. 

• This is because it does not correspond to the 

general form of Master’s theorem. 

• However, we can modify and bring it in the general 

form to apply Master’s theorem. 

  

Let- 

n = 2m ……(1) 

Then- 

T(2m) = T(2m/2) + 1 

  

Now, let T(2m) = S(m), then T(2m/2) = S(m/2) 
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So, we have- 

S(m) = S(m/2) +1 

Now, we can easily apply Master’s Theorem. 

  

We compare the given recurrence relation with S(m) = 

aS(m/b) + θ (mklogpm). 

Then, we have- 

a = 1 

b = 2 

k = 0 

p = 0 

  

Now, a = 1 and bk = 20 = 1. 

Clearly, a = bk. 

So, we follow case-02. 

  

Since p = 0, so we have- 

S(m) = θ (mlog
b

a.logp+1m) 

S(m) = θ (mlog
2
1.log0+1m) 

S(m) = θ (m0.log1m) 

  

Thus, 
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S(m) = θ(logm) ……(2) 

  

Now, 

• From (1), we have n = 2m. 

• So, logn = mlog2 which implies m = log2n. 

  

Substituting in (2), we get- 

S(m) = θ(loglog2n) 
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UNIT-2 
 

 

 

 

 

 

 

 

Dynamic Programming:-  

Dynamic Programming is a technique in computer 

programming that helps to efficiently solve a class of 

problems that have overlapping subproblems 

and optimal substructure property. 

 

Elements of Dynamic programming 

Dynamic programming posses two important 

elements which are as given below: 

 

    Advanced Design and analysis Techniques 

Dynamic programming:- Elements, Matrix-chain multiplication, longest common subsequence,  

Greedy algorithms:- Elements , Activity- Selection problem, Huffman codes, Task scheduling problem, Travelling 

Salesman Problem.  

 

Advanced data Structures:-  Binomial heaps, Fibonacci heaps, Splay Trees, Red-Black Trees.  

Topperworld.in 

https://topperworld.in/
https://topperworld.in/


Topperworld.in 

1. Overlapping sub problem 

One of the main characteristics is to split the 

problem into subproblem, as similar as divide and 

conquer approach. The overlapping subproblem is 

found in that problem where bigger problems share 

the same smaller problem. However unlike divide 

and conquer there are many subproblems in which 

overlap cannot be treated distinctly or 

independently. Basically, there are two ways for 

handling the overlapping subproblems: 

a .Top down approach 

It is also termed as memoization technique. In 

this, the problem is broken into subproblem and 

these subproblems are solved and the solutions 

are remembered, in case if they need to be solved 

in future. Which means that the values are stored 

in a data structure, which will help us to reach 

them efficiently when the same problem will 

occur during the program execution. 

b.Bottom up approach 

It is also termed as tabulation technique. In this, 

all subproblems are needed to be solved in 

advance and then used to build up a solution to 

the larger problem. 

2. Optimal sub structure 

It implies that the optimal solution can be obtained 

from the optimal solution of its subproblem. So 

optimal substructure is simply an optimal selection 
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among all the possible substructures that can help 

to select the best structure of the same kind to exist. 

Example : 

1. LCS(Longest Chain Subsequence) 

2. MCM(Matrix Chain Multiplication)  

 

1.LCS (Longest Chain Subsequence ) 

Subsequence: A subsequence of a given sequence is just 

the given sequence with some elements left out. 

Given two sequences X and Y, we say that the sequence 

is: 

X={x1,x2,x3……xn} 

Y={ y1,y2,y3……yn} 

The aim this problem is to find a maximum Length 

Common Sequence of X & Y . This problem is 

applicable in DNA matching in which we need to find 

out how similar are two stands of DNA or how closely 

related . 

Algorithm of LCS: 

Algorithm: LCS-Length-Table-Formulation (X, Y) 

m := length(X)  

n := length(Y)  

for i = 1 to m do  
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   C[i, 0] := 0  

for j = 1 to n do  

   C[0, j] := 0  

for i = 1 to m do  

   for j = 1 to n do  

      if xi = yj  

         C[i, j] := C[i - 1, j - 1] + 1  

         B[i, j] := ‘D’  

      else  

         if C[i -1, j] ≥ C[i, j -1]  

            C[i, j] := C[i - 1, j] + 1  

            B[i, j] := ‘U’  

         else  

         C[i, j] := C[i, j - 1] 

         B[i, j] := ‘L’  

return C and B 

 

Algorithm: Print-LCS (B, X, i, j) 

if i = 0 and j = 0  

   return   

if B[i, j] = ‘D’  

   Print-LCS(B, X, i-1, j-1)  

   Print(xi)  

else if B[i, j] = ‘U’  

   Print-LCS(B, X, i-1, j)  

else  

   Print-LCS(B, X, i, j-1)  

 

This algorithm will print the longest common subsequence of X and Y. 

 

Example of Longest Common Sequence 
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Example: Given two sequences X [1...m] and Y [1.....n]. Find the longest 

common subsequences to both. 

 

here X = (A,B,C,B,D,A,B) and Y = (B,D,C,A,B,A) 

     m = length [X] and n = length [Y] 

     m = 7 and n = 6 

Here x1= x [1] = A   y1= y [1] = B 

     x2= B  y2= D  

     x3= C  y3= C 

     x4= B  y4= A 

     x5= D  y5= B 

     x6= A  y6= A 

     x7= B 

Now fill the values of c [i, j] in m x n table 

Initially, for i=1 to 7 c [i, 0] = 0 

          For j = 0 to 6 c [0, j] = 0 

That is: 
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Now for i=1 and j = 1 

 x1 and y1 we get x1 ≠ y1 i.e. A ≠ B 

And  c [i-1,j] = c [0, 1] = 0 

 c [i, j-1] = c [1,0 ] = 0 

That is, c [i-1,j]= c [i, j-1] so c [1, 1] = 0 and b [1, 1] = ' ↑  ' 

 

Now for i=1 and j = 2 

x1 and y2 we get x1 ≠ y2 i.e. A ≠ D 

 c [i-1,j] = c [0, 2] = 0 

 c [i, j-1] = c [1,1 ] = 0 

That is, c [i-1,j]= c [i, j-1] and c [1, 2] = 0 b [1, 2] = '  ↑  ' 

 

Now for i=1 and j = 3 

 x1 and y3 we get x1 ≠ y3 i.e. A ≠ C 

 c [i-1,j] = c [0, 3] = 0 

 c [i, j-1] = c [1,2 ] = 0 

so c [1,3] = 0     b [1,3] = ' ↑ ' 
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Now for i=1 and j = 4 

 x1 and y4 we get. x1=y4 i.e A = A  

  c [1,4] = c [1-1,4-1] + 1 

     = c [0, 3] + 1 

      = 0 + 1 = 1 

 c [1,4] = 1 

 b [1,4] = '  ↖  ' 

 

Now for i=1 and j = 5 

           x1 and y5  we get x1 ≠ y5 

           c [i-1,j] = c [0, 5] = 0 

 c [i, j-1] = c [1,4 ] = 1 

Thus c [i, j-1] >  c [i-1,j] i.e. c [1, 5] = c [i, j-1] = 1. So b [1, 5] = '←' 

 

Now for i=1 and j = 6 

           x1 and y6   we get x1=y6 

                     c [1, 6] = c [1-1,6-1] + 1 

                              = c [0, 5] + 1 = 0 + 1 = 1 

     c [1,6] = 1 

     b [1,6] = '  ↖  ' 
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Now for i=2 and j = 1 

 We get x2 and y1 B = B i.e.  x2= y1 

             c [2,1] = c [2-1,1-1] + 1 

                     = c [1, 0] + 1 

                     = 0 + 1 = 1    

             c [2, 1] = 1 and b [2, 1] = ' ↖ ' 

Similarly, we fill the all values of c [i, j] and we get 
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Step 4: Constructing an LCS: The initial call is PRINT-LCS (b, X, X.length, Y.length) 

PRINT-LCS (b, x, i, j) 

 1. if i=0 or j=0 

 2. then return 

 3. if b [i,j] = ' ↖ ' 

 4. then PRINT-LCS (b,x,i-1,j-1) 

 5. print x_i 

 6. else if b [i,j] = '  ↑  ' 

 7. then PRINT-LCS (b,X,i-1,j) 

 8. else PRINT-LCS (b,X,i,j-1) 

Example: Determine the LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0,1,1,0). 

Solution: let X = (1,0,0,1,0,1,0,1) and Y = (0,1,0,1,1,0,1,1,0). 

 

We are looking for c [8, 9]. The following table is built. 
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From the table we can deduct that LCS = 6. There are several such sequences, for instance 

(1,0,0,1,1,0) (0,1,0,1,0,1) and (0,0,1,1,0,1) 

 

2) Matrix Chain Multiplication 

It is a Method under Dynamic Programming in which 

previous output is taken as input for next. 

Here, Chain means one matrix's column is equal to the 

second matrix's row 

Algorithm of Matrix Chain Multiplication 

MATRIX-CHAIN-ORDER (p) 
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 1. n   length[p]-1 

 2. for i ← 1 to n 

 3. do m [i, i] ← 0 

 4. for l ← 2 to n    // l is the chain length 

 5. do for i ← 1 to n-l + 1 

 6. do j ← i+ l -1 

 7. m[i,j] ←  ∞ 

 8. for k  ← i to j-1 

 9. do q  ← m [i, k] + m [k + 1, j] + pi-1 pk pj  

 10. If q < m [i,j] 

 11. then m [i,j] ← q 

 12. s [i,j] ← k 

 13. return m and s.       

 

Example Problem of Matrix Chain Multiplication 

Example-1 : We are given the sequence {4, 10, 3, 12, 

20, and 7}. The matrices have size 4 x 10, 10 x 3, 3 x 

12, 12 x 20, 20 x 7. We need to compute M [i,j], 0 ≤ i, 

j≤ 5. We know M [i, i] = 0 for all i. 
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Let us proceed with working away from the diagonal. We compute the optimal solution for 

the product of 2 matrices. 

 

 

Here P0 to P5 are Position and M1 to M5 are matrix of size (pi to pi-

1) 

On the basis of sequence, we make a formula , for Mi ------> p[i] as 

column and p[i-1] as row .  

In Dynamic Programming, initialization of every method done by 

'0'.So we initialize it by '0'.It will sort out diagonally. 

We have to sort out all the combination but the minimum output 

combination is taken into consideration. 

Calculation of Product of 2 matrices: 

1. m (1,2) = m1  x m2 

           = 4 x 10 x  10 x 3 

           = 4 x 10 x 3 = 120 

2. m (2, 3) = m2 x m3 

            = 10 x 3  x  3 x 12 

            = 10 x 3 x 12 = 360 

3. m (3, 4) = m3 x m4 

            = 3 x 12  x  12 x 20 

            = 3 x 12 x 20 = 720 

4. m (4,5) = m4 x m5 

           = 12 x 20  x  20 x 7 

           = 12 x 20 x 7 = 1680 
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o We initialize the diagonal element with equal i,j 

value with '0'. 

o After that second diagonal is sorted out and we get 

all the values corresponded to it 

Now the third diagonal will be solved out in the same 

way. 

Now product of 3 matrices: 

M [1, 3] = M1 M2 M3 

1. There are two cases by which we can solve this 

multiplication: ( M1 x M2) + M3, M1+ (M2x M3) 

 

2. After solving both cases we choose the case in which 

minimum output is there. 
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M [1, 3] =264 

As Comparing both output 264 is minimum in both cases 

so we insert 264 in table and ( M1 x M2) + M3 this 

combination is chosen for the output making. 

M [2, 4] = M2 M3 M4 

1. There are two cases by which we can solve this 

multiplication: (M2x M3)+M4, M2+(M3 x M4) 

2. After solving both cases we choose the case in which 

minimum output is there. 

 

M [2, 4] = 1320 

As Comparing both output 1320 is minimum in both 

cases so we insert 1320 in table and M2+(M3 x M4) this 

combination is chosen for the output making. 

 

M [3, 5] = M3  M4  M5 

1. There are two cases by which we can solve this 

multiplication: ( M3 x M4) + M5, M3+ ( M4xM5) 

2. After solving both cases we choose the case in which 

minimum output is there. 
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M [3, 5] = 1140 

As Comparing both output 1140 is minimum in both 

cases so we insert 1140 in table and ( M3 x M4) + M5this 

combination is chosen for the output making. 

 

Now Product of 4 matrices: 

M [1, 4] = M1  M2 M3 M4 

There are three cases by which we can solve this 

multiplication: 

1. ( M1 x M2 x M3) M4 

2. M1 x(M2 x M3 x M4) 

3. (M1 xM2) x ( M3 x M4) 

After solving these cases we choose the case in which 

minimum output is there 

 

M [1, 4] =1080 

As comparing the output of different cases then '1080' is 

minimum output, so we insert 1080 in the table and 
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(M1 xM2) x (M3 x M4) combination is taken out in output 

making, 

M [2, 5] = M2 M3 M4 M5 

There are three cases by which we can solve this 

multiplication: 

1. (M2 x M3 x M4)x M5 

2. M2 x( M3 x M4 x M5) 

3. (M2 x M3)x ( M4 x M5) 

After solving these cases we choose the case in which 

minimum output is there 

 
M [2, 5] = 1350 

As comparing the output of different cases then '1350' is 

minimum output, so we insert 1350 in the table and M2 x( 

M3 x M4 xM5)combination is taken out in output making. 

 

Now Product of 5 matrices: 

M [1, 5] = M1  M2 M3 M4 M5 
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There are five cases by which we can solve this 

multiplication: 

1. (M1 x M2 xM3 x M4 )x M5 

2. M1 x( M2 xM3 x M4 xM5) 

3. (M1 x M2 xM3)x M4 xM5 

4. M1 x M2x(M3 x M4 xM5) 

After solving these cases we choose the case in which 

minimum output is there 

 
M [1, 5] = 1344 

As comparing the output of different cases then '1344' is 

minimum output, so we insert 1344 in the table and M1 x 

M2 x(M3 x M4 x M5)combination is taken out in output 

making. 

Final Output is: 

 

Step 3: Computing Optimal Costs: let us assume that 

matrix Ai has dimension pi-1x pi for i=1, 2, 3....n. The 

input is a sequence (p0,p1,......pn) where length [p] = n+1. 

The procedure uses an auxiliary table m [1....n, 1.....n] 
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for storing m [i, j] costs an auxiliary table s [1.....n, 1.....n] 

that record which index of k achieved the optimal costs 

in computing m [i, j]. 

The algorithm first computes m [i, j] ← 0 for i=1, 2, 

3.....n, the minimum costs for the chain of length 1. 

 

Greedy Algorithm 

A greedy algorithm is an approach for solving a 

problem by selecting the best option available at the 

moment. It doesn't worry whether the current best result 

will bring the overall optimal result. 

The algorithm never reverses the earlier decision even if 

the choice is wrong. It works in a top-down approach. 

This algorithm may not produce the best result for all 

the problems. It's because it always goes for the local 

best choice to produce the global best result. 

 

 

Elements of Greedy Algorithm 

 

1. Greedy Choice Property 

If an optimal solution to the problem can be found by choosing the best choice at 

each step without reconsidering the previous steps once chosen, the problem can be 

solved using a greedy approach. This property is called greedy choice property. 

2. Optimal Substructure 
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If the optimal overall solution to the problem corresponds to the optimal solution to 

its subproblems, then the problem can be solved using a greedy approach. This 

property is called optimal substructure. 

 

Method of Greedy Algorithm: 

i) Huffman Coding  

ii) Knapsack problem  

iii) Activity Selection Problem (ASP) 

iv) Travelling Salesman Problem (TSP) 

v) Task Scheduling  

 

Huffman Coding  : Huffman Coding is a technique of compressing data to reduce 

its size without losing any of the details. It was first developed by David Huffman. 

Huffman Coding is generally useful to compress the data in which there are 

frequently occurring characters. 

 

o i) Data can be encoded efficiently using Huffman Codes. 

 

o (ii) It is a widely used and beneficial technique for compressing 

data. 

 

 

o (iii) Huffman's greedy algorithm uses a table of the frequencies 

of occurrences of each character to build up an optimal way of 

representing each character as a binary string. 
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o Suppose we have 105 characters in a data file. Normal 

Storage: 8 bits per character (ASCII) - 8 x 105 bits in a file. 

But we want to compress the file and save it compactly. 

Suppose only six characters appear in the file: 

 

 

o  
 

o How can we represent the data in a Compact way? 

 

(i) Fixed length Code: Each letter represented by an equal 

number of bits. With a fixed length code, at least 3 bits per 

character: 

For example: 

 

 

  a       0 

 

  b      101 

 

  c      100 
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  d      111 

 

  e      1101 

 

  f      1100 

 

Number of bits = (45 x 1 + 13 x 3 + 12 x 3 + 16 x 3 + 9 

x 4 + 5 x 4) x 1000 

= 2.24 x 105bits 

Thus, 224,000 bits to represent the file, a saving of 

approximately 25%.This is an optimal character code for 

this file. 

 

Algorithm of Huffman Code 

Huffman (C) 

1. n=|C| 

2. Q ← C 

3. for i=1 to n-1 

4. do 

5. z= allocate-Node () 

6. x=  left[z]=Extract-Min(Q) 

7. y= right[z] =Extract-Min(Q) 

8. f [z]=f[x]+f[y] 

9. Insert (Q, z) 

10. return Extract-Min (Q) 
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Example: Find an optimal Huffman Code for the 

following set of frequencies: 

 

 

 

 

1. a: 50   b: 25   c: 15   d: 40   e: 75   

Solution: 
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i.e. 

 

Again for i=2 

48.8M 

785 

Hello Java Program for Beginners 
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Similarly, we apply the same process we get 
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Thus, the final output is: 
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2) Knapsack Problem: 

The knapsack problem is a problem in combinational 

optimization : Given a set of items, each with a weight 

and a value, determine the number of each item to 

include in a collection so that the total weight is less than 

or equal to a given limit and the total value is as large as 

possible.  

For example, the weight of the container is 20 kg. We 

have to select the items in such a way that the sum of the 

weight of items should be either smaller than or equal to 

the weight of the container, and the profit should be 

maximum. 

Maximize ∑n=1n ( xi . pi) 

 

subject to constraint, 

∑n=1n ( xi . wi ) ⩽ W 

 

 

 

There are two types of knapsack problems: 

o 0/1 knapsack problem 

o Fractional knapsack problem 

 

1) Fractional Knapsack Problem  
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Algorithm: Greedy-Fractional-Knapsack (w [ 

1..n], p[1..n], W)  

 

for i = 1 to n  

   do x[i] = 0  

weight = 0  

for i = 1 to n  

   if weight + w[i] ≤ W then   

      x[i] = 1  

      weight = weight + w[i]  

   else  

      x[i] = (W - weight) / w[i]  

      weight = W  

      break  

return x 

 

 

 

 

Examples of Fractional Knapsack 

Problem: Consider the following instances of the 

fractional knapsack problem: n = 3, M = 20, V = (24, 25, 

15) and W = (18, 15, 20) find the feasible solutions. 

Solution: 
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Let us arrange items by decreasing order of profit density. 

Assume that items are labeled as X = (I1, I2, I3), have profit V 

= {24, 25, 15} and weight W = {18, 15, 20}. 

 

 

We shall select one by one item from Table. If the 

inclusion of an item does not cross the knapsack 

capacity, then add it. Otherwise, break the current item 

and select only the portion of item equivalent to 

remaining knapsack capacity. Select the profit 

accordingly. We should stop when knapsack is full or 

all items are scanned. 

Initialize, Weight of selected items, SW = 0, 

Profit of selected items, SP = 0, 

Set of selected items, S = { }, 

Here, Knapsack capacity M = 20. 

Iteration 1 : SW= (SW + w2) = 0 + 15 = 15 

SW ≤ M, so select I2 
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S = { I2 }, SW = 15, SP = 0 + 25 = 25 

Iteration 2 : SW + w1 > M, so break down item I1. 

The remaining capacity of the knapsack is 5 unit, so 

select only 5 units of item I1. 

frac = (M – SW) / W[i] = (20 – 15) / 18 = 5 / 18 

S = { I2, I1 * 5/18 } 

SP = SP + v1 * frac = 25 + (24 * (5/18)) = 25 + 6.67 = 

31.67 

SW = SW + w1 * frac = 15 + (18 * (5/18)) = 15 + 5 = 

20 

The knapsack is full. Fractional Greedy 

algorithm selects items { I2, I1 * 5/18 }, and it gives a 

profit of 31.67 units. 

Problem: Find the optimal solution for knapsack problem (fraction) where 

knapsack capacity = 28, P = {9, 5, 2, 7, 6, 16, 3} and w = {2, 5, 6, 11, 1, 9, 1}. 

 

Solution: 

Arrange items in decreasing order of profit to weight ratio 
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Initialize, Weight = 0, P = 0, M = 28, S = { } 

Where S is the solution set, P and W is profit and 

weight of included items, respectively. M is the 

capacity of the knapsack. 

Iteration 1 

(Weight + w5) ≤ M, so select I5 

So, S = { I5 }, Weight = 0 + 1 = 1, P = 0 + 6= 6 

Iteration 2 

(Weight + w1) ≤ M, so select I1 

So, S = {I5 ,I1 }, Weight = 1 + 2 = 3, P = 6 + 9= 15 

Iteration 3 
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(Weight + w7) ≤ M, so select I7 

o, S = {I5, I1, I7 }, Weight = 3 + 1 = 4, P = 15 + 3= 18 

Iteration 4 

(Weight + w6) ≤ M, so select I6 

So, S = {I5, I1, I7, I6 }, Weight = 4 + 9 = 13, P = 18 + 

16= 34 

Iteration 5 

(Weight + w2) ≤ M, so select I2 

So, S = {I5, I1, I7, I6, I2 }, Weight = 13 + 5 = 18, P = 34 

+ 5= 39 

Iteration 6 

(Weight + w4) > M, So I4 must be broken down into 

two parts x and y such that x = capacity left in knapsack 

and y = I4 – x. 

Available knapsack capacity is 10 units. So we can 

select only (28 – 18) / 11 = 0.91 unit of I4 

So S = {I5, I1, I7, I6, I2, 0.91 * I4 }, Weight = 18 + 

0.91*11 = 28, P = 39 + 0.91 * 7= 45.37 
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 Activity Selection Problem 

The activity selection problem is a mathematical 

optimization problem. Our first illustration is the 

problem of scheduling a resource among several 

challenge activities. We find a greedy algorithm provides 

a well designed and simple method for selecting a 

maximum- size set of manually compatible activities. 

• Span of activity is defined by its start time and 

finishing time. Suppose we have such n activities. 

• Aim of algorithm is to find optimal schedule with 

maximum number of activities to be carried out 

with limited resources. Suppose S = {a1, a2, a3, .. 

an} is the set of activities that we want to schedule. 

• Scheduled activities must be compatible with each 

other. Start time of activities is let’s say si and 

finishing time is fi, then activities i and j are called 

compatible if and only if fi < sj or fj < si. In other 

words, two activities are compatible if their time 

durations do not overlap. 

• Consider the below time line. Activities {A1, A3} 

and {A2, A3} are compatible set of activities. 

• For given n activities, there may exist multiple such 

schedules. Aim of activity selection algorithm is to 

find out the longest schedule without overlap. 

 Greedy Approach sort activities by their finishing time 

in increasing order, so that f1 ≤ f2 ≤ f3 ≤ . . . ≤ fn. By 

default it schedules the first activity in sorted list. 

Subsequent next activities are scheduled whose start time 
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is larger than finish time of previous activity. Run 

through all possible activities and do the same. 

Algorithm for Activity Selection Problem 

GREEDY- ACTIVITY SELECTOR (s, f) 

// A is Set of n activities sorted by finishing time.  

// S = { A[1] }, solution set, initially which contains first activity. 

 

1. n ← length [s] 

2. A ← {1} 

3. j ← 1. 

4. for i ← 2 to n 

5. do if si ≥ fi 

6. then A ← A ∪ {i} 

7. j ← i 

8. return A 

Example: Given 10 activities along with their start and end time as 

S = (A1 A2 A3 A4 A5 A6 A7 A8 A9 A10) 

Si = (1,2,3,4,7,8,9,9,11,12) 

fi = (3,5,4,7,10,9,11,13,12,14) 

Compute a schedule where the greatest number of 

activities takes place. 

Solution: The solution to the above Activity scheduling 

problem using a greedy strategy is illustrated below: 

Arranging the activities in increasing order of end time 
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Now, schedule A1 

Next schedule A3 as A1 and A3 are non-interfering. 

Next skip A2 as it is interfering. 

Next, schedule A4 as A1 A3 and A4 are non-interfering, then next, 

schedule A6 as A1 A3 A4 and A6 are non-interfering. 

Skip A5 as it is interfering. 

Next, schedule A7 as A1 A3 A4 A6 and A7 are non-interfering. 

Next, schedule A9 as A1 A3 A4 A6 A7 and A9 are non-interfering. 

Skip A8 as it is interfering. 

Next, schedule A10 as A1 A3 A4 A6 A7 A9 and A10 are non-interfering. 

Thus the final Activity schedule is: 
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Now we can understand another example : 
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In this example, we take the start and finish time of activities 

as follows: 

 

start = [1, 3, 2, 0, 5, 8, 11] 

finish = [3, 4, 5, 7, 9, 10, 12] 

 

Sorted by their finish time, the activity 0 gets selected. As the 

activity 1 has starting time which is equal to the finish time of 

activity 0, it gets selected.  

                                         Activities 2 and 3 have smaller 

starting time than finish time of activity 1, so they get 

rejected. Based on similar comparisons, activities 4 and 6 also 

get selected, whereas activity 5 gets rejected.  
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In this example, in all the activities 0, 1, 4 and 6 get selected, 

while others get rejected. 

 

Task Scheduling Algorithm 

 

This is the dispute of optimally scheduling unit-time tasks on a 

single processor, where each job has a deadline and a penalty 

that necessary be paid if the deadline is missed. 

Example: Find the optimal schedule for the following task with given weight (penalties) and 

deadlines. 

 
1 2 3 4 5 6 

di 4 2 4 3 1 4 

wi 70 60 50 40 30 20 

Solution: According to the Greedy algorithm we sort the jobs in decreasing order of their 

penalties so that minimum of penalties will be charged. 

In this problem, we can see that the maximum time for which uniprocessor machine will run 

in 6 units because it is the maximum deadline. 

Let Ti represents the tasks where i = 1 to 7 

 

T5 and T6 cannot be accepted after T7 so penalty is 

w5 + w6 = 30 + 20 = 50 (2 3 4 1 7 5 6) 

Other schedule is 
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(2 4 1 3 7 5 6) 

There can be many other schedules but (2 4 1 3 7 5 6) is optimal. 

 

Travelling Salesman   Problem ( TSP) 

The traveling salesman problem (TSP) is an  algorithmic problem tasked with 

finding the shortest route between a set of points and locations that must be visited. 

In the problem statement, the points are the cities a salesperson might visit. The 

salesman‘s goal is to keep both the travel costs and the distance traveled as low as 

possible. 

 

 

 

Solution: The cost- adjacency matrix of graph G is as follows: 

costij = 
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The tour starts from area H1 and then select the minimum cost area reachable from H1. 

 

Mark area H6 because it is the minimum cost area reachable from H1 and then select minimum 

cost area reachable from H6. 

https://topperworld.in/


Topperworld.in 

 

Mark area H7 because it is the minimum cost area reachable from H6 and then select minimum 

cost area reachable from H7. 

 

Mark area H8 because it is the minimum cost area reachable from H8. 
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Mark area H5 because it is the minimum cost area reachable from H5. 

 

Mark area H2 because it is the minimum cost area reachable from H2. 
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Mark area H3 because it is the minimum cost area reachable from H3. 

 

Mark area H4 and then select the minimum cost area reachable from H4 it is H1.So, using the 

greedy strategy, we get the following. 

4    3    2    4    3    2   1    6 

H1 → H6 → H7 → H8 → H5 → H2 → H3 → H4 → H1. 

Thus, the minimum travel cost = 4 + 3 + 2 + 4 + 3 + 2 + 1 + 6 = 25 

. 

 

Binomial heaps 
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 A binomial heap is a heap similar to a binary heap but also 

supports quickly merging two heaps. This is achieved by 

using a special tree structure. It is important as an 

implementation of the mergeable heap 

abstract data type (also called meldable heap), which is a 

priority queue supporting merge operation. 

Binomial tree 

A binomial heap is implemented as a collection of binomial 

trees (compare with a binary heap, which has a shape of a 

single binary tree). A binomial tree is defined recursively: 

• A binomial tree of order 0 is a single node 

• A binomial tree of order k has a root node whose     

children are roots of binomial trees of orders k−1, k−2, 

..., 2, 1, 0 (in this order). 

 

 

 

 Types of Binary Heap  

 

A binary heap can be classified further as either a max-

heap or a min-heap based on the ordering property. 

 

➢ Max-Heap : 

In this heap, the key value of a node is greater than or equal to 

the key value of the highest child. 

Hence, H[Parent(i)] ≥ H[i] 

• Max Heap conforms to the above properties of heap. 
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• In max heap, every node contains greater or equal value 

element than its child nodes. 

• Thus, root node contains the largest value element. 

 

 

 

Min- heap: 

In mean-heap, the key value of a node is lesser than or equal 

to the key value of the lowest child. 

Hence, H[Parent(i)] ≤ H[i] 

In this context, basic operations are shown below with respect 

to Max-Heap. Insertion and deletion of elements in and from 

heaps need rearrangement of elements. 

Hence, Heapify function needs to be called  

• Min Heap conforms to the above properties of heap. 

• In min heap, every node contains lesser value element 

than its child nodes. 

• Thus, root node contains the smallest value element. 
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Properties of Binary Heap  

All right, now with the basics out of the way, let's take a 

closer look at the specific properties of the heap data 

structure. 

1. Ordering 

Nodes must be arranged in an order according to values. The 

values should follow min-heap or max-heap property. 

In min-heap property, the value of each node, or child, is 

greater than or equal to the value of its parent, with the 

minimum value at the root node. 
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Min-heap 

 

 

In max-heap property, the value of each node, or child, 

is less than or equal to the value of its parent, with the 

maximum value at the root node. 
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Max-heap 

 

 

2. Structural 

All levels in a heap should be full. In other words, it should be 

a complete binary tree: 

• All levels of heap should be full, except the last one. 

• Nodes or child must be filled from left to right strictly. 

• Heap doesn't follow binary search tree principle. The 

values in right and left child or nodes don't matter. 
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Fibonacci Heap : 

  A fibonacci heap is a data structure that consists of a 

collection of trees which follow min heap or max heap 

property. We have already discussed min heap and max heap 

property in the Heap Data Structure  article. These two 

properties are the characteristics of the trees present on a 

fibonacci heap. 

 

Example of fabonacci Series : 
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 his Fibonacci Heap H consists of five Fibonacci Heaps and 

16 nodes. The line with arrow head indicates the root list. 

Minimum node in the list is denoted by min[H] which is 

holding 4. 

 

 

What is a Splay Tree? 

A splay tree is a self-balancing tree, but AVL and Red-Black 

trees are also self-balancing trees then. What makes the splay 

tree unique two trees. It has one extra property that makes it 

unique is splaying. 

 

Splaying 

After an element is accessed, the splay operation is 

performed, which brings the element to the root of the tree. If 

the element is not in a root position, splaying can take one of 

three patterns: 

1. Zig (or zag) step 

2. Zig-zig (or zag-zag) step 
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3. Zig-zag (or zag-zig) step 

The step you take is dependent on the position of the node. If 

the node is at the root, it is immediately returned. 

1. Zig (or zag) 

When no grandparent node exists, the splay function will 

move the node up to the parent with a single rotation. A left 

rotation is a zag and a right rotation is a zig. 

 

 

Note: A left rotation corresponds to a right placement (the 

node is right of the parent) and vice versa. 

 

X is splayed, P is parent, T1, T2 and T3 are subtrees 

2. Zig-zig (or zag-zag) 

When a grandparent and parent node exist and are placed in a 

similar orientation (e.g., the parent is left of the grandparent 
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and the node is left of the parent), the operation is either zig-

zig (left) or zag-zag (right). 

 

 

3. Zig-zag (or zag-zig) 

A zig-zag corresponds to the parent being left of the 

grandparent and right of the parent. A zag-zig is the opposite. 

 

 

 

Red -Black Tree 
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Red-Black tree is a self-balancing binary search tree in which 

each node contains an extra bit for denoting the color of the 

node, either red or black. 

A red-black tree satisfies the following properties: 

1. Red/Black Property: Every node is colored, either red 

or black. 

2. Root Property: The root is black. 

3. Leaf Property: Every leaf (NIL) is black. 

4. Red Property: If a red node has children then, the 

children are always black. 

5. Depth Property: For each node, any simple path from 

this node to any of its descendant leaf has the same 

black-depth (the number of black nodes). 

 

Example  
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The tree above ensures that every path from the root to a leaf node has the same 

amount of black nodes. In this case, there is one (excluding the root node). 
 

Properties of a red-black tree 

• Each tree node is colored either red or black. 

• The root node of the tree is always black. 

• Every path from the root to any of the leaf nodes must 

have the same number of black nodes. 

• No two red nodes can be adjacent, i.e., a red node cannot 

be the parent or the child of another red node. 
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UNIT-3 
 

 

 

 

 
 

Graph:-  

                It is a non -linear , non – primitive data 

structure i.e. represented with a set of verticle that are 

connected by edge i.e. G (V , e) 

 

 
 

 

GRAPH ALGORITHMS 

 
Review of graph algorithms:-Traversal Methods(Depth first and Breadth first search),Topological sort, Strongly connected components, 
Minimum spanning trees- Kruskal and Prims, Single source shortest paths, Relaxation, Dijkstras Algorithm, Bellman- Ford algorithm, 
Single source shortest paths for directed acyclic graphs,  All pairs shortest paths- shortest paths and matrix multiplication, Floyd-
Warshall algorithm. 
 
Computational Complexity:-Basic Concepts, Polynomial Vs Non-Polynomial Complexity, NP- hard and NP-complete classes. 
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Classification of Graph 

The following are some of the commonly used terms in graph : 

Term Description 

Vertex Every individual data element is called a vertex or a node. In the above image, 

 A, B, C, D & E are the vertices. 

Edge (Arc) It is a connecting link between two nodes or vertices. Each edge has two ends 

 and is represented as (startingVertex , endingVertex). 

Undirected 

Edge 

It is a bidirectional edge. 

Directed 

Edge 

It is a unidirectional edge. 

Weighted 

Edge. 

An edge with value (cost) on it. 

Degree The total number of edges connected to a vertex in a graph. 

Indegree The total number of incoming edges connected to a vertex. 

Outdegree The total number of outgoing edges connected to a vertex. 

Self-loop An edge is called a self-loop if its two endpoints coincide with each other. 

Adjacency Vertices are said to be adjacent to one another if there is an edge connecting them. 

 

 

Graph Traversal Algorithm 

i)DFS (Depth First Search ) 

ii)BFS ( Breadth First Search ) 

 

 

 

DFS (Depth First Search ) 
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Breadth-first search (BFS) is an algorithm that is used to 

graph data or searching tree or traversing structures. The full 

form of BFS is the Breadth-first search. 
                                          BFS is a graph traversal approach in 

which you start at a source node and layer by layer through the graph, 

analyzing the nodes directly related to the source node. Then, in BFS 

traversal, you must move on to the next-level neighbor nodes. 

According to the BFS, you must traverse the graph in a breadthwise 

direction: 

• To begin, move horizontally and visit all the current layer's 

nodes. 

• Continue to the next layer. 

Algorithm of BFS : 

Algorithm of BFS ( G , s) 

 1.for each vertex  v ∈ V[ G]-{s} 

2. color [u]= White 

3.d[u] := ∞ 

4. π[u]=NIL 

5 color [s]:= GRAY 

6.d[s]= NIL 

7. d[s]:= NIL 

8.Q= ɸ 

9. ENQUEUE =( Q,s) 
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10.while (Q ≠ ɸ) 

11.{ u=DEQUEUE(Q) 

 12.for each v € Adj (u) in 'G' 

13.{ If colour [v] = WHITE 

14. color [v]:= GRAY 

15.d[v]=d[u]+1 

16.π[v]=u 

17. ENQUEUE (Q, v) } 

18.Color [u]= BLACK } 

 

 

Breadth-First Search uses a Queue data Structure to store the 

node and mark it as "visited" until it marks all the neighboring 

vertices directly related to it. The queue operates on the First 
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In First Out (FIFO) principle, so the node's neighbors will be 

viewed in the order in which it inserts them in the node, 

starting with the node that was inserted first. 

Application of DFS 

i)Tropological Sort  

ii)Strongly Connected Components 

1)Tropological Sort : 

Tropological sort is an algorithm which sorts a directed graph 

by returning an array or a vector, or a list, that consists of 

nodes where each node appears before all the nodes it points 

to. 

Here, we'll simply refer to it as an array, you can use a vector 

or a list too. 

Say we had a graph, 

a --> b --> c 

then the topological sort algorithm would return - [a, b, c]. 

Why? Because, a points to b, which means that a must come 

before b in the sort. b points to c, which means that b must 

come before c in the sort. 

Let's take a graph and see the algorithm in action. Consider the graph 

given below: 
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Initially in_degree[0]=0 and T is empty 

 

 
 

 

So, we delete 0 from Queue and append it to T. The vertices directly 

connected to 0 are 1 and 2 so we decrease their in_degree[] by 1. So, 

now in_degree[1]=0 and so 1 is pushed in Queue. 

 
 

 

Next we delete 1 from Queue and append it to T. Doing this we 

decrease in_degree[2] by 1, and now it becomes 0 and 2 is pushed 

into Queue. 
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So, we continue doing like this, and further iterations looks like as 

follows: 
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So at last we get our Topological sorting in T i.e. : 0, 1, 2, 3, 4, 5 

ii) Strongly Connected Component 

A strongly connected component is the portion of a directed graph in which there 

is a path from each vertex to another vertex. It is applicable only on a directed 

graph. 

For example: 

Let us take the graph below. 

 

 

 

Initial Graph 

The strongly connected components of the above graph are: 
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You can observe that in the first strongly connected component, every vertex can 

reach the other vertex through the directed path. 

 

 2 .  DFS (Depth First Search) 

 

DFS is a recursive traversal algorithm for searching all 

the vertices of a graph or tree data structure. It starts 

from the first node of graph G and then goes to further 

vertices until the goal vertex is reached. 

• DFS uses stack as its backend data structure 

• edges that lead to an unvisited node are called 

discovery edges while the edges that lead to an 

already visited node are called block edges. 

 

 1.Algorithm of DFS ( G ) 

2.for each vertex u ∈ V[G] 

3.color u =WHITE 

4.π[u]=NIL 

5.Time =0; 

6.for each value u ∈ V[G] 

7.if ( color [u]= WHITE   

8.DFS -VISIT (G ,u ) 

Algo DFS VISIT ( G , u ) 
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1.Time = time +1;  // white vertex ‘ u’ has just been 

discover 

2.d[u] = time 

3.color[u] =GRAY  

4.for each v ∈ Adj[u] in ‘G’ // explore edge ( V , v ) 

5.if  ( color [v] =WHITE ) 

6.π[v]=u 

7.DFS -VISIT ( G , V) 

8.Color [u] =BLACK  

9.Time =time +1  

10.f[u] = time 

15.d[v]=d[u]+1 

16.π[v]=u 

17. ENQUEUE (Q, v) } 

18.Color [u]= BLACK } 

 

 

G = is a graph consisting of ‘v’ vertex where  :- 

  

π denotes the parents model from which a particular 

nodes will be explore  

d[u] & f[u] = denotes the discovery & finishing time of 
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the nodes u.  

 

 

 

 

 
Let us consider the graph below: 

 
 

 

Starting node: A 

Step 1: Create an adjacency list for the above graph. 
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tep 2: Create an empty stack. 

Step 3: Push ‘A’ into the stack 

 

 

Step 4: Pop ‘A’ and push ‘B’ and ‘F’. Mark node ‘A’ 

as the visited node 

 

Step 5: pop ‘F’ and push ‘D’. Mark ‘F’ as a visited 

node. 
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Step 6: pop ‘D’ and push ‘C’. Mark ‘D’ as a visited 

node. 

 

 

 

 

 
 

 

 
Step 7: pop ‘C’ and push ‘E’. Mark ‘C’ as a visited node. 
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Step 8: pop ‘E’. Mark ‘E’ as a visited node. No new node is left. 

 
Step 9: pop ‘B’. Mark ‘B’ as visited. All the nodes in the graph are visited now. 
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Minimum Spanning Tree 

 Before we learn about spanning trees, we need to understand two graphs: 

undirected graphs and connected graphs. 

An undirected graph is a graph in which the edges do not point in any direction 

(ie. the edges are bidirectional). 

Undirected Graph 

A connected graph is a graph in which there is always a path from a vertex to any 

other vertex. 

 

Connected Graph 

 

 

 

Spanning tree 
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A spanning tree is a sub-graph of an undirected connected graph, which includes 

all the vertices of the graph with a minimum possible number of edges. If a vertex 

is missed, then it is not a spanning tree. 

 

Example of a Spanning Tree 

Let's understand the above definition with the help of 

the example below. 

The initial graph is: 

Weighted graph 

The possible spanning trees from the above graph are: 

Minimum spanning tree - 1
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Minimum spanning tree - 2

Minimum spanning tree - 3

Minimum spanning tree - 4 

The minimum spanning tree from the above spanning 

trees is: 
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Minimum spanning tree 

The minimum spanning tree from a graph is found 

using the two method  in MST  

i) Kruskal algorithm 

ii) Prims algorithm  

 

 

Kruskal's Algorithm : 

 

Kruskal's Algorithm is used to find the minimum 

spanning tree for a connected weighted graph. The main 

target of the algorithm is to find the subset of edges by 

using which we can traverse every vertex of the graph. 

It follows the greedy approach that finds an optimum 

solution at every stage instead of focusing on a global 

optimum. 

 

How does Kruskal's algorithm work? 
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In Kruskal's algorithm, we start from edges with the 

lowest weight and keep adding the edges until the goal is 

reached. The steps to implement Kruskal's algorithm are 

listed as follows - 

o First, sort all the edges from low weight to high. 

o Now, take the edge with the lowest weight and add 

it to the spanning tree. If the edge to be added creates 

a cycle, then reject the edge. 

o Continue to add the edges until we reach all vertices, 

and a minimum spanning tree is created. 

The applications of Kruskal's algorithm are - 

o Kruskal's algorithm can be used to layout electrical 

wiring among cities. 

o It can be used to lay down LAN connections. 

 

 

Algorithm of Kruskal : 

1.{ constant a min -heap out of thr edge cost using 

HEAPIFY 

2. fir I =1 to n ; 

3. do parent [i] =1 // each vertex is in a different set 

4. i=0; min cost =0; 

5. while ( ( i<n-1) && ( heap not empty)) do 
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6.{ Delete 0 min cost edge (u,v) from the heap & re- 

heapify using ADJUST 

7. j= FIND (u) ,k = FIND (v) 

8.if ( j  ≠ k) 

9. { i= i+1 

10. t [ i ,1] =u , t[i,z]=v; 

11. Min cost = min cost + cost ( u, v) 

12. UNION (j , k); 

13.}} 

14. if (i≠ n-1) then write ( No spanning Tree is possible else return 

Min cost 

15.} 

 

 

Example of Kruskal's algorithm 

Now, let's see the working of Kruskal's algorithm using 

an example. It will be easier to understand Kruskal's 

algorithm using an example. 

Suppose a weighted graph is - 
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Step 1 - First, add the edge AB with weight 1 to the 

MST. 
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Step 2 - Add the edge DE with weight 2 to the MST as 

it is not creating the cycle. 

 

Step 3 - Add the edge BC with weight 3 to the MST, as 

it is not creating any cycle or loop. 
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Step 4 - Now, pick the edge CD with weight 4 to the 

MST, as it is not forming the cycle. 

 

Step 5 - After that, pick the edge AE with 

weight 5. Including this edge will create the cycle, so 

discard it. 

Step 6 - Pick the edge AC with weight 7. Including this 

edge will create the cycle, so discard it. 

Step 7 - Pick the edge AD with weight 10. Including this 

edge will also create the cycle, so discard it. 
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So, the final minimum spanning tree obtained from the 

given weighted graph by using Kruskal's algorithm is - 

 

The cost of the MST is = AB + DE + BC + CD = 1 + 2 + 

3 + 4 = 10. 

Now, the number of edges in the above tree equals the 

number of vertices minus 1. So, the algorithm stops here. 

 

 

 

Prims Algorithm 

 

Prim's algorithm to find minimum cost spanning tree 

(as Kruskal's algorithm) uses the greedy approach. 

Prim's algorithm shares a similarity with the shortest 

path first algorithms. 

 

➢ Prim’s Algorithm is a famous greedy 

algorithm. 
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➢ It is used for finding the Minimum Spanning 

Tree (MST) of a given graph. 

 

 

➢ To apply Prim’s algorithm, the given graph 

must be weighted, connected and undirected 

 

 

 

Algorithm of Prims ( e , cost , n, t)  

 

1.{ let ( k,l) be an edge of minimum cost in e  

2. Min cost = cost ( k, l ) ,I =1  

3. { [ I ,1 ] = k  , t [ I , z ] =l 

4. for I =1 to n  // initialize near  

5. if ( cost [ I ,k] < cost [ i ,l ] ) 

6. then near [i] =k; 

7.else near [i]= l } 

8.near [k] = near [l]=0; 

9. for I =3 to n-1  do ; 

10. {  Let  j is an index such that near [;] ≠ 0  & cost [ j, 

near [j] ] is minimum  

 

11.  t [i , j] = j ; t[i , 2 ] = near [j]  

12. Min cost = Min  cost  + cost [ j , near [ i ]  

13. near [i] =o; 

14. for k = 1 to n do  // update near  

15. if ((near [k] ≠ 0) && cost [k ,near [k] > cost [ k, j]) 
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16.then near [k] =I } 

17.return Min cost } 

 

 

Let’s take it one example : 

 

Construct the minimum spanning tree (MST) for the 

given graph using Prim’s Algorithm- 

 

 
Solution- 

  

The above discussed steps are followed to find the 

minimum cost spanning tree using Prim’s Algorithm- 

  

Step-01: 
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Step-02: 

  

 

  

Step-03: 

  

 

  

Step-04: 

  

https://topperworld.in/


Topperworld.in 

 

  

Step-05: 

  

 

  

Step-06: 
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Since all the vertices have been included in the MST, so 

we stop. 

  

Now, Cost of Minimum Spanning Tree 

= Sum of all edge weights 

= 10 + 25 + 22 + 12 + 16 + 14 

= 99 units 

  

Problem-02: 

  

Using Prim’s Algorithm, find the cost of minimum 

spanning tree (MST) of the given graph- 
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Solution- 

  

The minimum spanning tree obtained by the application 

of Prim’s Algorithm on the given graph is as shown 

below- 

  

 

  

Now, Cost of Minimum Spanning Tree 

= Sum of all edge weights 

= 1 + 4 + 2 + 6 + 3 + 10 

= 26 units 

  

To gain better understanding about Prim’s Algorithm, 

 

 

Single source shortest paths ( SSSP) 
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The Single-Source Shortest Path (SSSP) problem 

consists of finding the shortest paths between a given 

vertex v and all other vertices in the graph. Algorithms 

such as Breadth-First-Search (BFS) for unweighted 

graphs or Dijkstra [1] solve this problem. 

                                             In a shortest- paths 

problem, we are given a weighted, directed graphs G = 

(V, E), with weight function w: E → R mapping edges 

to real-valued weights. The weight of path p = (v0,v1,..... 

vk) is the total of the weights of its constituent edges: 

 
 

 

 

 

1) Dijkstra’s Algorithm, 

2)  Bellman Ford  Algorithm 

 

a) INITIALIZE -SINGLE SOURCE ( r) 

1.d[r] = 0; 

2.d[v]=0; 

 

      

b) ALGORITHM RELAXATION (  u , v , w) 

1.if d[v]> d[u] + w[ u , v] 

2.then d[v]=d[u]+w[u ,v] 

 

Here d[v] = distance of node v from source  
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Here, 

 W= denotes the weight of the edges  

r = Source code  

t= destination node  

u = any intermediate node 

 
 

 

 

 

Dijkstra’s Algorithm( v ,cost , dist , n) 

 

 

1.for I =1to n do  

2 { r [ i ] = false , dist [ i ] = cost [ v , i] } // 

initialize s  

3. r[v]=true , dist[v]=0.0 // put v in s  

4.for sum = 2 to n-1 do // determine “ n-1” 

path from  

5.{ choose ‘u’ among those vertex not in ‘s’ 
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such that d[ u] is minimum  

6. r[u] = true // put ‘u’ in s  

7. for ( each w adjacent to ‘u’ with r [ w] = fix 

) 

8.if ( d[w]>d[u] + cost[u,w]) then // relaxctive 

of edge  

9. d[w] = d[u] + cost[ u,w] 

10.}  

 

 
 

 

In this algorithm , 

v = source node  

u = intermediate node  

cost = the weight of the edge 

d = distance from source node  

n= total no. of vertice 
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‘S’ define the set which is intically empty & 

the vertices are choosen in set as according to 

the Shortest distance .  

 

 

 

Example of Dijkstra's Algorithm 

Now that you know more about this algorithm, let's see how it 

works behind the scenes with a a step-by-step example. 

We have this graph: 

 
The algorithm will generate the shortest path from node 0 to all the other nodes 

in the graph. 

 

Note : For this graph, we will assume that the weight of the edges represents the 

distance between two nodes. 

We will have the shortest path from node 0 to node 1, from node 0 to node 2, 

from node 0 to node 3, and so on for every node in the graph. 

Initially, we have this list of distances (please see the list below): 

• The distance from the source node to itself is 0. For this example, the 

source node will be node 0 but it can be any node that you choose. 

• The distance from the source node to all other nodes has not been 

determined yet, so we use the infinity symbol to represent this initially. 
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We also have this list (see below) to keep track of the nodes that have not been 

visited yet (nodes that have not been included in the path): 

 
Note: Since we are choosing to start at node 0, we can mark this node as visited. 

Equivalently, we cross it off from the list of unvisited nodes and add a red 

border to the corresponding node in diagram: 

 

 
Now we need to start checking the distance from node 0 to its adjacent nodes. 

As you can see, these are nodes 1 and 2 (see the red edges): 

 

 

We need to update the distances from node 0 to node 1 and 

node 2 with the weights of the edges that connect them to 

node 0 (the source node). These weights are 2 and 6, respectively: 
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After updating the distances of the adjacent nodes, we need to: 

• Select the node that is closest to the source node based on the current 

known distances. 

• Mark it as visited. 

• Add it to the path. 

If we check the list of distances, we can see that node 1 has the shortest distance 

to the source node (a distance of 2), so we add it to the path. 

In the diagram, we can represent this with a red edge: 

 
We mark it with a red square in the list to represent that it has been "visited" and 

that we have found the shortest path to this node: 

 

We cross it off from the list of unvisited nodes: 
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Now we need to analyze the new adjacent nodes to find the shortest 

path to reach them. We will only analyze the nodes that are adjacent 

to the nodes that are already part of the shortest path (the path 

marked with red edges). 

Node 3 and node 2 are both adjacent to nodes that are already in the 

path because they are directly connected to node 1 and node 0, 

respectively, as you can see below. These are the nodes that we will 

analyze in the next step. 

 

 
Since we already have the distance from the source node to node 2 written down 

in our list, we don't need to update the distance this time. We only need to 

update the distance from the source node to the new adjacent node (node 3): 

 
This distance is 7. Let's see why. 

To find the distance from the source node to another node (in this case, node 3), 

we add the weights of all the edges that form the shortest path to reach that 

node: 

• For node 3: the total distance is 7 because we add the weights of the 

edges that form the path 0 -> 1 -> 3 (2  for the edge 0 -> 1 and 5 for the 

edge 1 -> 3). 
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Now that we have the distance to the adjacent nodes, we have to choose which 

node will be added to the path. We must select the unvisited node with the 

shortest (currently known) distance to the source node. 

From the list of distances, we can immediately detect that this is node 2 with 

distance 6: 

 
We add it to the path graphically with a red border around the node and a red 

edge: 

 
We also mark it as visited by adding a small red square in the list of distances 

and crossing it off from the list of unvisited nodes: 

 
Now we need to repeat the process to find the shortest path from the source 

node to the new adjacent node, which is node 3. 

You can see that we have two possible paths 0 -> 1 -> 3 or 0 -> 2 -> 3. Let's see 

how we can decide which one is the shortest path. 
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Node 3 already has a distance in the list that was recorded previously (7, see the 

list below). This distance was the result of a previous step, where we added the 

weights 5 and 2 of the two edges that we needed to cross to follow the path 0 -> 

1 -> 3. 

But now we have another alternative. If we choose to follow the path 0 -> 2 -> 

3, we would need to follow two edges 0 -> 2 and 2 -> 3 with 

weights 6 and 8, respectively, which represents a total distance of 14. 

 
Clearly, the first (existing) distance is shorter (7 vs. 14), so we will choose to 

keep the original path 0 -> 1 -> 3. We only update the distance if the new 

path is shorter. 

Therefore, we add this node to the path using the first alternative: 0 -> 1 -> 3. 

 

We mark this node as visited and cross it off from the list of 

unvisited nodes: 
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Now we repeat the process again. 

We need to check the new adjacent nodes that we have not visited so far. This 

time, these nodes are node 4 and node 5 since they are adjacent to node 3. 

 
We update the distances of these nodes to the source node, always trying to find 

a shorter path, if possible: 

• For node 4: the distance is 17 from the path  0 -> 1 -> 3 -> 4. 

• For node 5: the distance is 22 from the path 0 -> 1 -> 3 -> 5. 

 

We need to choose which unvisited node will be marked as visited 

now. In this case, it's node 4 because it has the shortest distance in 

the list of distances. We add it graphically in the diagram: 
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We also mark it as "visited" by adding a small red square in the list: 

 
And we cross it off from the list of unvisited nodes: 

 

And we repeat the process again. We check the adjacent nodes: 

node 5 and node 6. We need to analyze each possible path that we 

can follow to reach them from nodes that have already been marked 

as visited and added to the path. 

 
For node 5: 
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• The first option is to follow the path 0 -> 1 -> 3 -> 5, which has a distance 

of 22 from the source node (2 + 5 + 15). This distance was already 

recorded in the list of distances in a previous step. 

• The second option would be to follow the path 0 -> 1 -> 3 -> 4 -> 5, 

which has a distance of 23 from the source node (2 + 5 + 10 + 6). 

Clearly, the first path is shorter, so we choose it for node 5. 

For node 6: 

• The path available is 0 -> 1 -> 3 -> 4 -> 6, which has a distance 

of 19 from the source node (2 + 5 + 10 + 2). 

 
We mark the node with the shortest (currently known) distance as visited. In this case, 

node 6. 

 

And we cross it off from the list of unvisited nodes: 

 

Now we have this path (marked in red): 
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Only one node has not been visited yet, node 5. Let's see how we can 

include it in the path. 

There are three different paths that we can take to reach node 5 from 

the nodes that have been added to the path: 

• Option 1: 0 -> 1 -> 3 -> 5 with a distance of 22 (2 + 5 + 15). 

• Option 2: 0 -> 1 -> 3 -> 4 -> 5 with a distance of 23 (2 + 5 + 10 

+ 6). 

• Option 3: 0 -> 1 -> 3 -> 4 -> 6 -> 5 with a distance of 25 (2 + 5 

+ 10 + 2 + 6). 

 

We select the shortest path: 0 -> 1 -> 3 -> 5 with a distance of 22. 

 

We mark the node as visited and cross it off from the list of 

unvisited nodes: 
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And voilà! We have the final result with the shortest path from 

node 0 to each node in the graph. 

 
 
In the diagram, the red lines mark the edges that belong to the 

shortest path. You need to follow these edges to follow the shortest 

path to reach a given node in the graph starting from node 0. 
 

 2. Bellman-Ford algorithm 

 

Bellman -Ford Algorithm( v ,cost, dist, n) 

1.for i=1 to n do 

2.{ d[i] = cost[v , i] } 

3.for k=2 to n-1 do 

4.{ for each ‘u’ such that u ≠ v & has atleast one in long edge 
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do  

5. { for each ( i, u) in the graph do 

6.{ if ( do[u] > d[i] + cost [i, u] 

   Then d[u]=d[i] + cost [i, u] 

7.}}} 

 

 

In this Algorithm 

 

n= total no. of vertices  

d= distance from source  

v= destination node  

cost= weight of edge  

a = denotes that total no. of intermediate edge i.e. use for SD 

computation  

 

 

 

➢ Bellman Ford algorithm helps us find the shortest path from a vertex to all 

other vertices of a weighted graph. 

➢ t is similar to Dijkstra's algorithm but it can work with graphs in which 

edges can have negative weights. 

➢ if the weighted graph contains the negative weight values, then the 

Dijkstra algorithm does not confirm whether it produces the correct 

answer or not. 

➢ It begins with a starting vertex and calculates the distances between 

other vertices that a single edge can reach. 

 

 

By doing this repeatedly for all vertices, we can guarantee that the result is 

optimized. 
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Step-1 for Bellman Ford's algorithm

Step-2 for Bellman Ford's algorithm
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Step-3 for Bellman Ford's algorithm

Step-4 for Bellman Ford's algorithm
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Step-5 for Bellman Ford's algorithm

Step-6 for Bellman Ford's algorithm 

 

 

 

 

 

Single source shortest path in DAG  
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➢ Single Source shortest path is basically the 

shortest distance between the source and other 

vertices in the graph. 

 

➢ We can find the shortest path from the source to 

every other vertex by relaxing the edges of the 

weighted directed acyclic 

graph G=(V,E) according to the topological sort 

of its vertices. 

 

DAG - SHORTEST - PATHS (G, w, s) 

 1. Topologically sort the vertices of G. 

 2. INITIALIZE - SINGLE- SOURCE (G, s) 

 3. for each vertex u taken in topologically sorted order 

 4. do for each vertex v ∈ Adj [u] 

 5. do RELAX (u, v, w) 
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Step1: To topologically sort vertices apply DFS (Depth 

First Search) and then arrange vertices in linear order 

by decreasing order of finish time. 

 

https://topperworld.in/


Topperworld.in 

 
 

 

Now, take each vertex in topologically sorted order and 

relax each edge 

 

 
 

1. adj [s] →t, x   

2. 0 + 3 < ∞   

3. d [t] ← 3   

4. 0 + 2 < ∞   

https://topperworld.in/


Topperworld.in 

5. d [x] ← 2   

 

 
 

 

1. adj [t] → r, x   

2. 3 + 1 < ∞   

3. d [r] ← 4   

4. 3 + 5 ≤ 2   

 

 
 

1. adj [x] → y   

2. 2 - 3 < ∞   

3. d [y] ← -1   

 

 
 

 

1. adj [y] → r   

2. -1 + 4 < 4   

3. 3 <4   

4. d [r] ← 3   
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Thus the Shortest Path is: 

1. s to x is 2   

2. s to y is -1   

3. s to t is 3   

4. s to r is 3   

 

 

 

Computational complexity 

 

In computer science, the computational complexity or 

simply complexity of an algorithm is the amount of 

resources required to run it. 

 Particular focus is given 

to time and memory requirements. 

 

 The complexity of a problem is the complexity of the 

best algorithms that allow solving the problem 
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There are lots of variants of this bit that we are generally 

looking at when we are doing any computer programming or 

in general or in most practical purposes are just two main 

complexities, one is Time Complexity, and the other is Space 

(memory) Complexity. 

 

Time complexity is simple as how fast your code runs, how 

much time it will take, depends on the number of steps 

 

Example of Complexity in Time (execution) and Space 

(memory) factors : 

 

Example-1 : More Complex 

i = 1;                        1s 

while( i <= 10 )              11s 

{ 

    a = 5;                       10s 

    result = i * a;              10s 

    printf(“\n” /d”, result);    10s 

    i++;                         10s 

} 

Here, we assume each variable is equal to 2 Bytes. In the 

above example we use three variables (i, a, result) which is 6 

Bytes. 

Execution Time : 52s 

Memory (Space) : 6 Bytes 

 

 

Example-2 : Less Complex 

a = 5;                       1s 
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i = 1;                           1s 

while( i<=10)                  11s 

{   

    result = i * a;              10s 

    printf(“\n” /d”, result);    10s 

    i++;                         10s  

} 

Execution Time : 43s 

Memory (Space) : 6 Bytes 

 

Definition of Polynomial time: - If we produce an output 

according to the given input within a specific amount of time 

such as within a minute, hours. This is known as Polynomial 

time. 

Definition of Non-Polynomial time: - If we produce an output 

according to the given input but there are no time constraints is 

known as Non-Polynomial time. But yes output will produce 

but time is not fixed yet. 

NP -hard: 

 An NP-hard problem is at least as hard as the hardest 

problem in NP and it is the class of the problems such 

that every problem in NP reduces to NP-hard. 

NP- Complete 

NP-complete problem, any of a class of computational 

problems for which no efficient solution algorithm has been 

found.  
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                 Many significant computer-science problems belong 

to this class—e.g., the traveling salesman problem, 

satisfiability problems, and graph-covering problems. 
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UNIT-4 
 

 

 
Flow Network: 

                            Flow Network is a directed graph that 

is used for modeling material Flow.  

                          There are two different vertices; one is 

a source which produces material at some steady rate, 

and another one is sink which consumes the content at 

the same constant speed. 

 

 

Definition: A Flow Network is a directed graph G = (V, E) 

such that 

1. For each edge (u, v) ∈ E, we associate a nonnegative 

weight capacity c (u, v) ≥ 0.If (u, v) ∉ E, we assume that 

c (u, v) = 0. 

 

Network and Sorting Algorithms 

 
Flow and Sorting Networks Flow networks, Ford- Fulkerson method, Maximum Bipartite matching, Sorting 
Networks, Comparison network, The zero- One principle, Bitonic sorting network, Merging networks  
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2. There are two distinguishing points, the source s, and the 

sink t; 

3. For every vertex v ∈ V, there is a path from s to t 

containing v. 

Let G = (V, E) be a flow network. Let s be the source of 

the network, and let t be the sink. A flow in G is a real-

valued function f: V x V→R such that the following 

properties hold: 

 

o Capacity Constraint: For all u, v ∈ V, we need f (u, v) ≤ c (u, v). 

o Skew Symmetry: For all u, v ∈ V, we need f (u, v) = - f (u, v). 

o Flow Conservation: For all u ∈ V- {s, t}, we need 

 

The quantity f (u, v), which can be positive or negative, is 

known as the net flow from vertex u to vertex v. In 

the maximum-flow problem, we are given a flow network G 

with source s and sink t, and we wish to find a flow of 

maximum value from s to t. 
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The value of the flow is the net flow from the source, 

 

The positive net flow entering a vertex v is described by 
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The positive net flow leaving a vertex is described 

symmetrically. One interpretation of the Flow-Conservation 

Property is that the positive net flow entering a vertex other 

than the source or sink must equal the positive net flow leaving 

the vertex. 

A flow f is said to be integer-valued if f (u, v) is an integer for 

all (u, v) ∈ E. Clearly, the value of the flow is an integer is an 

integer-valued flow. 

 

Comparison Networks 

 

Comparison Networks are a type of sorting networks 

which always sort their inputs. Wires and comparator 

comprise comparison network. A Comparator is a 

device which has two inputs (x, y) and outputs (x’, y’). 

It performs the following function: 

x' = min (x, y), 

y' = max (x, y)  

 

Comparison Network is a set of comparators interconnected by 

wires. Running time of comparator can define regarding depth. 

Depth of a Wire: An input wire of a comparison network has 

depth 0. Now, if a comparator has two input wires with depths 

dx and dy' then its output wires have depth max (dx,dy) + 1. 
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A sorting network is a comparison network for which the 

output sequence is monotonically increasing (that is b1≤ b2 ≤ 

....bn) for every input sequence. 

Fig: A Sorting network based on Insertion Sort 

 
 

 

 

Network Flow Problems 

The most obvious flow network problem is the following: 

Problem1: Given a flow network G = (V, E), the maximum 

flow problem is to find a flow with maximum value. 
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Problem 2: The multiple source and sink maximum flow 

problem is similar to the maximum flow problem, except there 

is a set {s1,s2,s3.......sn} of sources and a set {t1,t2,t3..........tn} of 

sinks. 

Fortunately, this problem is no solid than regular maximum 

flow. Given multiple sources and sink flow network G, we 

define a new flow network G' by adding 

o A super source s, 

o A super sink t, 

o For each si, add edge (s, si) with capacity ∞, and 

o For each ti,add edge (ti,t) with capacity ∞ 

Figure shows a multiple sources and sinks flow network and an 

equivalent single source and sink flow network 

 
 

Residual Networks: The Residual Network consists of an 

edge that can admit more net flow. Suppose we have a flow 

network G = (V, E) with source s and sink t. Let f be a flow in 

G, and examine a pair of vertices u, v ∈ V. The sum of 

additional net flow we can push from u to v before exceeding 

the capacity c (u, v) is the residual capacity of (u, v) given by 
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When the net flow f (u, v) is negative, the residual capacity 

cf (u,v) is greater than the capacity c (u, v). 

For Example: if c (u, v) = 16 and f (u, v) =16 and f (u, v) = -4, 

then the residual capacity cf (u,v) is 20. 

Given a flow network G = (V, E) and a flow f, the residual 

network of G induced by f is Gf = (V, Ef), where 

 
 

That is, each edge of the residual network, or residual edge, can 

admit a strictly positive net flow. 

Augmenting Path: Given a flow network G = (V, E) and a 

flow f, an augmenting path p is a simple path from s to t in the 

residual networkGf. By the solution of the residual network, 

each edge (u, v) on an augmenting path admits some additional 

positive net flow from u to v without violating the capacity 

constraint on the edge. 

Let G = (V, E) be a flow network with flow f. The residual 

capacity of an augmenting path p is 

 

The residual capacity is the maximal amount of flow that can 

be pushed through the augmenting path. If there is an 

augmenting path, then each edge on it has a positive capacity. 

We will use this fact to compute a maximum flow in a flow 

network. 
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Ford – Fulkerson Algorithm 

 

 The Ford–Fulkerson method or Ford–Fulkerson 

algorithm (FFA) is a greedy algorithm that computes 

the maximum flow in a flow network. 
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A term, flow network, is used to describe a network of vertices and edges with a 

source (S) and a sink (T). Each vertex, except S and T, can receive and send an 

equal amount of stuff through it.  

 

Algorithm of Ford Fulkerson  

 

 

FORD-FULKERSON METHOD (G, s, t) 

 1. Initialize flow f to 0 

 2. while there exists an augmenting path p 

 3. do argument flow f along p 

 4. Return f 

 

FORD-FULKERSON (G, s, t) 

 1. for each edge (u, v) ∈ E [G] 

 2. do f [u, v] ← 0 

 3. f [u, v] ← 0 

 4. while there exists a path p from s to t in the residual 

network Gf. 

 5. do cf (p)←min? { Cf (u ,v):(u ,v)is on p} 

 6. for each edge (u, v) in p 

 7. do f [u, v] ← f [u, v]  +  cf  (p) 

 8. f [u, v] ←f[ u ,v] 

 

Example: Each Directed Edge is labeled with capacity. 

Use the Ford-Fulkerson algorithm to find the maximum 

flow. 
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Solution: The left side of each part shows the residual 

network Gf with a shaded augmenting path p,and the right side 

of each part shows the net flow f. 
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Maximum Bipartite matching 

 

A Bipartite Graph is a graph whose vertices can be 

divided into two independent sets L and R such that 

every edge (u, v) either connect a vertex from L to R or 

a vertex from R to L. In other words, for every edge (u, 

v) either u ∈ L and v ∈ L. We can also say that no edge 

exists that connect vertices of the same set. 

 

Matching is a Bipartite Graph is a set of edges chosen in such 

a way that no two edges share an endpoint. Given an undirected 

Graph G = (V, E), a Matching is a subset of edge M ⊆ E such 

that for all vertices v ∈ V, at most one edge of M is incident on 

v. 

A Maximum matching is a matching of maximum cardinality, 

that is, a matching M such that for any matching M', we 

have|M|>|M' |. 
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Finding a maximum bipartite matching 

We can use the Ford-Fulkerson method to find a maximum 

matching in an undirected bipartite graph G= (V, E) in time 

polynomial in |V| and |E|. The trick is to construct a flow 

network G= (V',E') for the bipartite graph G as follows. We let 

the source s and sink t be new vertices not in V, and we let V'=V 

∪{s,t}.If the vertex partition of G is V = L∪R, the directed 

edges of G' are the edges of E, directed from L to R, along with 

|V| new directed edges: 
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Algorithm of Maximum Bipartite 

matching: 

 
1.bool kuhn(vertex v) { 

2. if (used[v]) return false; 

3. used[v] = true; 

4.  for (vertex q adjacent to v) { 

5.   if ((q has no pair) or kuhn(pairs[q])) { 

6.   pairs[q] = v; 

7.  return true; 

8.   } 

9.  } 

10.} 

11.find_max_matching { 

12. for (vertex v = { 

13.   1, 

14.   .., 

15.  n 

16. }) { 

17.  used = { 

18.  0 

19.  }; 

20.  kuhn(v); 

21.  } 

22.} 
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The zero -one principal 

 
The zero-one principle says that if a sorting network works 

correctly when each input is drawn from the set {0, 1}, then it 

works correctly on arbitrary input numbers. (The numbers can 

be integers, reals, or, in general, any set of values from any 

linearly ordered set.) As we construct sorting networks and 

other comparison networks, the zero-one principle will allow 

us to focus on their operation for input sequences consisting 

solely of 0’s and 1’s. Once we have constructed a sorting 

network and proved that it can sort all zero-one sequences, we 

shall appeal to the zero-one principle to show that it properly 

sorts sequences of arbitrary values. The proof of the zero-one 

principle relies on the notion of a monotonically increasing 

function. 

                                                          If a comparison network 

transforms the input sequence a = ha1, a2, . . . , an into the 

output sequence b = hb1, b2, . . . , bn, then for any 

monotonically increasing function f , the network transforms 

the input sequence f (a) = h f (a1), f (a2), . . . , f (an) into the 

output sequence f (b) = h f (b1), f (b2), . . . , f (bn). 

 

 Proof   We shall first prove the claim that if f is a 

monotonically increasing function, then a single comparator 

with inputs f (x) and f (y) produces outputs f (min(x, y)) and f 

(max(x, y)). We then use induction to prove the lemma. 
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Theorem    (Zero-one principle) If a comparison network with 

n inputs sorts all 2n possible sequences of 0’s and 1’s 

correctly, then it sorts all sequences of arbitrary numbers 

correctly. 

 

  Proof   
           Suppose for the purpose of contradiction that the 

network sorts all zero-one sequences, but there exists a 

sequence of arbitrary numbers that the network does not 

correctly sort. That is, there exists an input sequence ha1,a2,. . 

. ,ani containing elements ai and aj such that ai < aj , but the 

network places aj before ai in the output sequence. We define 

a monotonically increasing function f as

 
 

Since the network places aj before ai in the output sequence 

when ha1, a2, . . . , ani is input, that it places f (aj) before f (ai) 

in the output sequence when h f (a1), f (a2), . . . , f (an) is 

input. But since f (aj) = 1 and f (ai) = 0, we obtain the 

contradiction that the network fails to sort the zero-one 

sequence h f (a1), f (a2), . . . , f (an) correctly 

 

 

 

Exercises: Prove that applying a monotonically increasing 

function to a sorted sequence produces a sorted sequence. 

 

 

Prove that a comparison network with n inputs correctly sorts 

the input sequence (n, n − 1, . . . ,1) if and only if it correctly 
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sorts the n − 1 zero-one sequences <1, 0, 0, . . . ,0, 0>, <1, 1, 

0, . . . ,0, 0>, . . ., <1, 1, 1, . . . ,1, 0>. 

 

 
 

 A sorting network for sorting 4 numbers 

 

Bitonic Sorting Network 
 

 

 

A sequence that monotonically increases and then 

monotonically decreases, or else monotonically decreases and 

then monotonically increases is called a bitonic sequence. For 

example: the sequence (2, 5, 6, 9, 3, 1) and (8, 7, 5, 2, 4, 6) are 

both bitonic. The bitonic sorter is a comparison network that 

sorts bitonic sequence of 0's and 1's. 

 

Half-Cleaner: A bitonic sorter is containing several stages, 

each of which is called a half-cleaner. Each half-cleaner is a 

comparison network of depth 1 in which input line i is 

compared with line 1+  for i = 1, 2..... . 

 

 

Bitonic Sorter: By recursively connecting half-

cleaners, we can build a bitonic sorter, which is a 

network that sorts bitonic sequences. The first stage of 

BITONIC-SORTER [n] consists of HALF-CLEANER 

[n], which  
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produces two bitonic sequences of half the size such 

that every element in the top half is at least as small as 

each element in the bottom half. Thus, we can complete 

the sort by utilizing two copies of BITONIC-SORTER 

[n/2] to sort the two halves recursively. 

 

 
 

 

Bitonic Sort Algorithm 

 

Bitonic sort is a parallel sorting algorithm that performs 

O(n2log n) comparisons. 

                                         Although the number of comparisons 

is more than that in any other popular sorting algorithm, it 

performs better for the parallel implementation because 

elements are compared in a predefined sequence that must not 

depend upon the data being sorted. The predefined sequence is 

called the Bitonic sequence. 

To understand the bitonic sort, we first have to understand 

the Bitonic sequence. 

In Bitonic sequence, elements are first arranged in increasing 

order, and then after some particular index, they start 

decreasing. 
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An array with A[0…i…n-1] is said to be bitonic, if there is an 

index i, such that  

 

 
1. A[0] < A[1] < A[2] .... A[i1] < A[i] > A[i+1] > A[i+2] > A[i+3] > ... >A[

n-1]   

Where, 0 ≤ i ≤ n-1. 

Before moving directly towards the algorithm of bitonic sort, 

first, understand the conversion of any random sequence into a 

bitonic sequence. 

How to convert the random sequence into a bitonic sequence? 

Consider a sequence A[ 0 ... n-1] of n elements. First, start 

constructing a Bitonic sequence by using 4 elements of the 

sequence. Sort the first 2 elements in ascending order and the 

last 2 elements in descending order, concatenate this pair to 

form a Bitonic sequence of 4 elements. Repeat this process for 

the remaining pairs of the element until we find a Bitonic 

sequence. 

Let's understand the process to convert the random sequence 

into a bitonic sequence using an example. 

Suppose the elements of array are - {30, 70, 40, 80, 60, 20, 10, 50} 
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Merging Network 

Merging Network is the network that can join two sorted input sequences into one sorted output 

sequence. We adapt BITONIC-SORTER [n] to create the merging network MERGER [n]. 

The merging network is based on the following assumption: 

Given two sorted sequences, if we reverse the order of the second sequence and 

then connect the two sequences, the resulting sequence is bitonic. 

For Example: Given two sorted zero-one sequences X = 00000111 and Y 

=00001111, we reverse Y to get YR = 11110000. 

he sorting network SORTER [n] need the merging network to implement a 

parallel version of merge sort. The first stage of SORTER [n] consists of n/2 

copies of MERGER [2] that work in parallel to merge pairs of a 1-element 

sequence to produce a sorted sequence of length 2. The second stage subsists of 

n/4 copies of MERGER [4] that merge pairs of these 2-element sorted sequences 

to generate sorted sequences of length 4. In general, for k = 1, 2..... log n, stage k 

consists of n/2k copies of MERGER [2k] that merge pairs of the 2k-1 element 

sorted sequence to produce a sorted sequence of length2k. At the last stage, one 

sorted sequence consisting of all the input values is produced. This sorting 

network can be shown by induction to sort zero-one sequences, and therefore by 

the zero-one principle, it can sort arbitrary values. 
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The recurrence given the depth of SORTER [n] 
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