
Created by- TopperTopperWorldWorld

Interview Question

TOP 30

©Topperworld

Q 1. What are the different data types present in C++?

Ans : The 4 data types in C++ are given below:

⚫ Primitive Datatype(basic datatype). Example- char, short, int,

float, long, double, bool, etc.

⚫ Derived datatype. Example- array, pointer, etc.

⚫ Enumeration. Example- enum

⚫ User-defined data types. Example- structure, class, etc.

Q 2. What is the difference between C and C++?

Ans : The main difference between C and C++ are provided in the table below:

C C++

C is a procedure-oriented

programming language.

C++ is an object-oriented

programming language.

C does not support data hiding.

Data is hidden by encapsulation to

ensure that data structures and

operators are used as intended.

C is a subset of C++ C++ is a superset of C.

Function and operator overloading are

not supported in C

Function and operator overloading is

supported in C++

Namespace features are not present

in C

Namespace is used by C++, which

avoids name collisions.

Functions can not be defined inside

structures.

Functions can be defined inside

structures.

©Topperworld

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

C C++

calloc() and malloc() functions are

used for memory allocation and free()

function is used for memory

deallocation.

new operator is used for memory

allocation and deletes operator is

used for memory deallocation.

Q 3. What are class and object in C++?

Ans : A class is a user-defined data type that has data members and

member functions. Data members are the data variables and member

functions are the functions that are used to perform operations on these

variables.

An object is an instance of a class. Since a class is a user-defined data type so

an object can also be called a variable of that data type.

A class is defined as-

class A{

private:

Int data;

public:

void fun()

{

}

 };

http://topperworld.in/
http://topperworld.in/)
https://www.scaler.com/topics/difference-between-malloc-and-calloc-in-c/

©Topperworld

Q 4. What is the difference between struct and class?

Ans : In C++ a structure is the same as a class except for a few differences

like security. The difference between struct and class are given below:

Structure Class

Members of the structure are public by default.
Members of the class are

private by default.

When deriving a struct from a class/struct,

default access specifiers for base class/struct

are public.

When deriving a class,

default access specifiers are

private.

Q 5. What is operator overloading?

Ans : Operator Overloading is a very essential element to perform the

operations on user-defined data types. By operator overloading we can

modify the default meaning to the operators like +, -, *, /, <=, etc.

For example -

The following code is for adding two complex number using operator

overloading-

©Topperworld

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/
https://topperworld.in/ebook-store/

©Topperworld

#include <iostream>

class Complex {

private:

 double real;

 double imag;

public:

 Complex(double r = 0.0, double i = 0.0) : real(r), imag(i) {}

 // Overloading the '+' operator to add two complex numbers

 Complex operator+(const Complex& other) const {

 return Complex(real + other.real, imag + other.imag);

 }

 // Overloading the '<<' operator for easy printing

 friend std::ostream& operator<<(std::ostream& out, const

Complex& c) {

 out << c.real << " + " << c.imag << "i";

 return out;

 }

};

int main() {

 Complex c1(2.5, 3.5);

 Complex c2(1.5, 2.5);

 Complex result = c1 + c2;

 std::cout << "c1 = " << c1 << std::endl;

 std::cout << "c2 = " << c2 << std::endl;

 std::cout << "Sum = " << result << std::endl;

 return 0;

}

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Q 6. What is polymorphism in C++?

Ans : Polymorphism in simple means having many forms. Its behavior is

different in different situations. And this occurs when we have multiple

classes that are related to each other by inheritance.

For example, think of a base class called a car that has a method called car

brand(). Derived classes of cars could be Mercedes, BMW, Audi - And they

also have their own implementation of a cars

The two types of polymorphism in c++ are:

 Compile Time Polymorphism

 Runtime Polymorphism

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/

©Topperworld

Q 7. Explain constructor in C++

Ans : The constructor is a member function that is executed automatically

whenever an object is created. Constructors have the same name as the

class of which they are members so that compiler knows that the member

function is a constructor. And no return type is used for constructors.

©Topperworld

#include <iostream>

class MyClass {

private:

 int myInt;

public:

 // Constructor with parameter

 MyClass(int val) {

 myInt = val;

 std::cout << "Constructor called with value: " << val << std::endl;

 } // Function to display the value of myInt

 void display() {

 std::cout << "myInt = " << myInt << std::endl;

 }

};

int main() {

 MyClass obj1(10); // Constructor is called with value 10

 MyClass obj2(20); // Constructor is called with value 20

 // Displaying the values of myInt for both objects

 obj1.display(); // Output: myInt = 10

 obj2.display(); // Output: myInt = 20

 return 0;

}

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

Q 8. Tell me about virtual function

Ans : Virtual function is a member function in the base class that you

redefine in a derived class. A virtual function is declared using the virtual

keyword. When the function is made virtual, C++ determines which function

is to be invoked at the runtime based on the type of the object pointed by the

base class pointer.

Q 9. Compare compile time polymorphism and Runtime

polymorphism

Ans : The main difference between compile-time and runtime polymorphism

is provided below:

Compile-time polymorphism Run time polymorphism

In this method, we would come to know

at compile time which method will be

called. And the call is resolved by the

compiler.

In this method, we come to know at

run time which method will be

called. The call is not resolved by

the compiler.

It provides fast execution because it is

known at the compile time.

It provides slow execution

compared to compile-time

polymorphism because it is known

at the run time.

It is achieved by function overloading and

operator overloading.

It can be achieved by virtual

functions and pointers.

Q 10. What do you know about friend class and friend function?

Ans : A friend class can access private, protected, and public members of

other classes in which it is declared as friends.

©Topperworld

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

Like friend class, friend function can also access private, protected, and

public members. But, Friend functions are not member functions.

©Topperworld

#include <iostream>

// Forward declaration of MyClass

class MyClass;

// Friend function declaration

void friendFunction(const MyClass&);

// Friend class declaration

class FriendClass {

public:

 void friendMethod(const MyClass&);

};

// Definition of MyClass

class MyClass {

private:

 int data = 10;

 // Declare friendFunction as a friend function

 friend void friendFunction(const MyClass&);

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

 // Declare FriendClass as a friend class

 friend class FriendClass;

public:

 void display() {

 std::cout << "Data: " << data << std::endl;

 }

};

// Definition of friend function

void friendFunction(const MyClass& obj) {

 std::cout << "Friend function accessing private data: " <<

obj.data << std::endl;

}

// Definition of friend class method

void FriendClass::friendMethod(const MyClass& obj) {

 std::cout << "Friend class method accessing private data: "

<< obj.data << std::endl;

}

int main() {

 MyClass obj;

 // Accessing private data using friend function

friendFunction(obj);

 // Accessing private data using friend class method

 FriendClass fc;

 fc.friendMethod(obj);

 return 0;

}

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Output:

Q 11. What are the C++ access specifiers?

Ans : In C++ there are the following access specifiers:

➢ Public: All data members and member functions are accessible

outside the class.

➢ Protected: All data members and member functions are accessible

inside the class and to the derived class.

➢ Private: All data members and member functions are not accessible

outside the class.

Q 12. Define inline function

Ans : If a function is inline, the compiler places a copy of the code of that

function at each point where the function is called at compile time.

One of the important advantages of using an inline function is that it

eliminates the function calling overhead of a traditional function.

Friend function accessing private data: 10

Friend class method accessing private data: 10

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/dsa-tutorial/

©Topperworld

Q 13. What is a reference in C++?

Ans : A reference is like a pointer. It is another name of an already existing

variable. Once a reference name is initialized with a variable, that variable

can be accessed by the variable name or reference name both.

Q 14. What do you mean by abstraction in C++?

Ans : Abstraction is the process of showing the essential details to the user

and hiding the details which we don’t want to show to the user or hiding

the details which are irrelevant to a particular user.

Q 15. Is deconstructor overloading possible? If yes then explain and

if no then why?

Ans : No destructor overloading is not possible. Destructors take no

arguments, so there’s only one way to destroy an object. That’s the

reason destructor overloading is not possible.

Q 16. What do you mean by call by value and call by reference?

Ans : In call by value method, we pass a copy of the parameter is passed to

the functions.

For these copied values a new memory is assigned and changes made to

these values do not reflect the variable in the main function.

In call by reference method, we pass the address of the variable and the

address is used to access the actual argument used in the function call. So

changes made in the parameter alter the passing argument.

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Q 17. What is an abstract class and when do you use it?

Ans : A class is called an abstract class whose objects can never be created.

Such a class exists as a parent for the derived classes.

We can make a class abstract by placing a pure virtual function in the class.

Q 18. What are destructors in C++?

Ans : A constructor is automatically called when an object is first created.

Similarly when an object is destroyed a function called destructor

automatically gets called.

A destructor has the same name as the constructor (which is the same as the

class name) but is preceded by a tilde.

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/ebook-store/
https://topperworld.in/java-tutorial/

©Topperworld

Example:

Output:

#include <iostream>

class MyClass {

public:

 // Constructor

 MyClass() {

 std::cout << "Constructor called." << std::endl;

 }

 // Destructor

 ~MyClass() {

 std::cout << "Destructor called." << std::endl;

 }

};

int main() {

 MyClass obj;

 // Destructor will be called automatically when obj goes out

of scope

 return 0;

}

Constructor called.

Destructor called.

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Q 19. What are the static members and static member functions?

When a variable in a class is declared static, space for it is allocated for the

lifetime of the program. No matter how many objects of that class have been

created, there is only one copy of the static member. So same static member

can be accessed by all the objects of that class.

A static member function can be called even if no objects of the class exist

and the static function are accessed using only the class name and the scope

resolution operator ::

Q 20. Explain inheritance

Inheritance is the process of creating new classes, called derived classes,

from existing classes. These existing classes are called base classes. The

derived classes inherit all the capabilities of the base class but can add new

features and refinements of their own.

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/ebook-store/

©Topperworld

Q 21. What is a copy constructor?

Ans : A copy constructor is a member function that initializes an object using

another object of the same class.

Example-

#include <iostream>

class MyClass {

private:

 int data;

public:

 // Constructor

 MyClass(int value) : data(value) {

 std::cout << "Constructor called." << std::endl;

 }

 // Copy constructor

 MyClass(const MyClass& other) : data(other.data) {

 std::cout << "Copy constructor called." << std::endl;

 }

 // Display function

 void display() {

 std::cout << "Data: " << data << std::endl;

 }

};

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Output:

Q 22. What is the difference between shallow copy and deep copy?

Ans : The difference between shallow copy and a deep copy is given below:

Shallow Copy Deep Copy

Shallow copy stores the references

of objects to the original memory

address.

Deep copy makes a new and separate

copy of an entire object with its unique

memory address.

©Topperworld

Constructor called.

Data: 42

Copy constructor called.

Data: 42

int main() {

 // Creating an object

 MyClass obj1(42);

 obj1.display(); // Output: Data: 42

 // Using copy constructor to create a new object

 MyClass obj2 = obj1;

 obj2.display(); // Output: Data: 42

 return 0;

}

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

Shallow Copy Deep Copy

Shallow copy is faster. Deep copy is comparatively slower.

Shallow copy reflects changes made

to the new/copied object in the

original object.

Deep copy doesn’ t reflect changes

made to the new/copied object in the

original object

Q 23. What is the difference between virtual functions and pure

virtual functions?

Ans : A virtual function is a member function in the base class that you

redefine in a derived class. It is declared using the virtual keyword.

Virtual function Pure virtual function

A virtual function is a member

function of base class which can be

redefined by derived class.

A pure virtual function is a member

function of base class whose only

declaration is provided in base class

and should be defined in derived

class otherwise derived class also

becomes abstract.

Classes having virtual functions are

not abstract.

Base class containing pure virtual

function becomes abstract.

Syntax:

virtual<func_type><func_name>()

{

 // code

}

Syntax:

virtual<func_type><func_name>()

 = 0;

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Virtual function Pure virtual function

Definition is given in base class. No definition is given in base class.

Base class having virtual function

can be instantiated i.e. its object can

be made.

Base class having pure virtual

function becomes abstract i.e. it

cannot be instantiated.

If derived class do not redefine

virtual function of base class, then it

does not affect compilation.

If derived class do not redefine

virtual function of base class, then

no compilation error but derived

class also becomes abstract just like

the base class.

All derived class may or may not

redefine virtual function of base

class.

All derived class must redefine pure

virtual function of base class

otherwise derived class also

becomes abstract just like base

class.

Q 24. If class D is derived from a base class B. When creating an

object of type D in what order would the constructors of these

classes get called?

Ans : The derived class has two parts, a base part, and a derived part. When

C++ constructs derived objects, it does so in phases. First, the most-base

class(at the top of the inheritance tree) is constructed.

©Topperworld

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/cpp-tutorial/
http://topperworld.in/

©Topperworld

Then each child class is constructed in order until the most-child class is

constructed last.

So the first Constructor of class B will be called and then the constructor of

class D will be called.

During the destruction exactly reverse order is followed. That is destructor

starts at the most-derived class and works its way down to base class.

So the first destructor of class D will be called and then the destructor of

class B will be called.

Q 25. Can we call a virtual function from a constructor:

Ans : Yes, we can call a virtual function from a constructor. But the behavior

is a little different in this case. When a virtual function is called, the virtual

call is resolved at runtime. It is always the member function of the current

class that gets called. That is the virtual machine doesn’t work within the

constructor.

©Topperworld

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/
https://topperworld.in/ebook-store/
https://topperworld.in/dsa-tutorial/

©Topperworld

For example-

#include <iostream>

class Base {

public:

 Base() {

 std::cout << "Base constructor called." << std::endl;

 // Call virtual function from constructor

 printMessage();

 }

 virtual void printMessage() {

 std::cout << "Message from Base class." << std::endl;

 }

};

class Derived : public Base {

public:

 Derived() {

 std::cout << "Derived constructor called." << std::endl;

 }

 void printMessage() override {

 std::cout << "Message from Derived class." << std::endl;

 }

};

int main() {

 Derived d;

 return 0;

}

©Topperworld

http://topperworld.in/
http://topperworld.in/)
http://topperworld.in/

©Topperworld

Output:

Q 26. What are void pointers?

Ans : A void pointer is a pointer which is having no datatype associated with

it. It can hold addresses of any type.

For example-

Base constructor called.

Message from Base class.

Derived constructor called.

#include <iostream>

int main() {

 int x = 10;

 float y = 3.14;

 void* ptr;

 // Assigning address of integer variable to void pointer

 ptr = &x;

 std::cout << "Value of x: " << *(static_cast<int*>(ptr)) <<

std::endl;

 // Assigning address of float variable to void pointer

 ptr = &y;

 std::cout << "Value of y: " << *(static_cast<float*>(ptr)) <<

std::endl;

 return 0;

}

http://topperworld.in/
http://topperworld.in/)

©Topperworld

Output:

Q 27. What is this pointer in C++?

Ans : The member functions of every object have a pointer named this,

which points to the object itself.

The value of this is set to the address of the object for which it is called. It

can be used to access the data in the object it points to.

Example :

Value of x: 10

Value of y: 3.14

#include <iostream>

class MyClass {

private:

 int data;

public:

 // Constructor

 MyClass(int value) : data(value) {}

 // Member function to display the value of data

 void display() {

 std::cout << "Data: " << this->data << std::endl;

 }

http://topperworld.in/
http://topperworld.in/)

©Topperworld

// Member function to compare two objects

 bool isEqual(const MyClass& other) {

 return this == &other;

 }

};

int main() {

 MyClass obj1(10);

 MyClass obj2(20);

 obj1.display(); // Output: Data: 10

 obj2.display(); // Output: Data: 20

 if (obj1.isEqual(obj2)) {

 std::cout << "obj1 and obj2 are the same object." << std::endl;

 } else {

 std::cout << "obj1 and obj2 are different objects." <<

std::endl;

 }

 return 0;

}

http://topperworld.in/
http://topperworld.in/)
https://topperworld.in/ebook-store/

©Topperworld

Output:

Q 28. What does the Scope Resolution operator do?

Ans : A scope resolution operator is denoted by a ‘::‘ symbol. Just like its

name this operator resolves the barrier of scope in a program. A scope

resolution operator is used to reference a member function or a global

variable out of their scope furthermore to which it can also access the

concealed variable or function in a program.

Scope Resolution is used for numerous amounts of tasks:

1) To access a global variable when there is a local variable with the same

name

2) To define the function outside the class

3) In case of multiple inheritances

4) For namespace

Q 29. What is an abstract class and when do you use it?

Ans : An abstract class is a class that is specifically designed to be used as a

base class. An abstract class contains at least one pure virtual function. You

declare a pure virtual function by using a pure specifier(= 0) in the

declaration of a virtual member function in the class declaration

You cannot use an abstract class as a parameter type, a function return type,

or the type of an explicit conversion, nor can you declare an object of an

abstract class. However, it can be used to declare pointers and references to

an abstract class.

An abstract class is used if you want to provide a common, implemented

functionality among all the implementations of the component. Abstract

classes will allow you to partially implement your class, whereas interfaces

Data: 10

Data: 20

obj1 and obj2 are different objects.

http://topperworld.in/
http://topperworld.in/)

©Topperworld

ABOUT US

would have no implementation for any members whatsoever. In simple

words, Abstract Classes are a good fit if you want to provide implementation

details to your children but don’t want to allow an instance of your class to

be directly instantiated.

Q 30. What is the main use of the keyword “Volatile”?

Ans : Just like its name, things can change suddenly and unexpectantly; So it

is used to inform the compiler that the value may change anytime. Also, the

volatile keyword prevents the compiler from performing optimization on the

code. It was intended to be used when interfacing with memory-mapped

hardware, signal handlers, and machine code instruction.

At TopperWorld, we are on a mission to empower college students with the

knowledge, tools, and resources they need to succeed in their academic

journey and beyond.

➢ Our Vision

❖ Our vision is to create a world where every college student can easily

access high-quality educational content, connect with peers, and achieve

their academic goals.

❖ We believe that education should be accessible, affordable, and engaging,

and that's exactly what we strive to offer through our platform.

http://topperworld.in/
http://topperworld.in/)

©Topperworld

➢ Unleash Your Potential

❖ In an ever-evolving world, the pursuit of knowledge is essential.

TopperWorld serves as your virtual campus, where you can explore a

diverse array of online resources tailored to your specific college

curriculum.

❖ Whether you're studying science, arts, engineering, or any other discipline,

we've got you covered.

❖ Our platform hosts a vast library of e-books, quizzes, and interactive

study tools to ensure you have the best resources at your fingertips.

➢ The TopperWorld Community

❖ Education is not just about textbooks and lectures; it's also about forming

connections and growing together.

❖ TopperWorld encourages you to engage with your fellow students, ask

questions, and share your knowledge.

❖ We believe that collaborative learning is the key to academic success.

➢ Start Your Journey with TopperWorld

❖ Your journey to becoming a top-performing college student begins with

TopperWorld.

❖ Join us today and experience a world of endless learning possibilities.

❖ Together, we'll help you reach your full academic potential and pave the

way for a brighter future.

❖ Join us on this exciting journey, and let's make academic success a reality

for every college student.

http://topperworld.in/
http://topperworld.in/)

DSA Tutorial C Tutorial C++ Tutorial

Java Tutorial Python Tutorial

Explore More

“Unlock Your
Potential”

With- TopperTopperWorldWorld

topperworld.in

Follow Us On E-mail

topperworld.in@gmail.com

https://topperworld.in/dsa-tutorial/
https://topperworld.in/c-tutorial/
https://topperworld.in/cpp-tutorial/
https://topperworld.in/java-tutorial/
https://topperworld.in/python-tutorial-2/
https://www.linkedin.com/company/topperworld/
https://www.instagram.com/topperworld.in/
https://topperworld.in/
https://topperworld.in/
https://topperworld.in/

