Roll No.

Total Pages: 03

BT-3/D-22

43140

COMPUTER SCIENCE AND ENGINEERING Digital Electronics ES-207-A

Time: Three Hours

[Maximum Marks: 75

Note: Attempt *Five* questions in all, selecting at least *one* question from each Unit. All questions carry equal marks.

Unit I

- 1. (a) Convert the following decimal numbers in binary: 2
 - (i) 28.6
 - (ii) 31.567.
 - (b) Perform the following operations using 2's complement:
 - (i) 48 23
 - (ii) 23 (-67).
 - (c) Explain the conversion of AND operation into OR operation with the help of De-Morgan theorem. 5
 - (d) Simplify (A + B)(A' + C) to minimum number of literals.
- (a) Explain the different properties of logic families.
 Explain the working of TTL NAND gate.

(3-34/5) L-43140

P.T.O.

(b)	Minimize the expression using K-wap.
	$F = \Pi M(1, 2, 5, 6, 8, 9, 10) . d(3, 7, 15).$
	Also realize the obtained expression using AOI
	logic.
	Unit II
(a)	State and explain the working of BCD adder with
()	its logic diagram.
(b)	Design a 3-to-8 decoder. 5
(a)	Design a 3 bit odd parity generator. 5
(b)	What do you mean by multiplexer? Explain the
(-)	working of $n: 1$ mux. Design a multiplexer tree for
	32:1 mux using 8:1 and 2:1 mux. 10
	Unit III
(a)	Explain the working of J-K flip-flop. What is race
(a)	around condition in J-K flip-flop? How can it be
	solved by master slave flip-flop?
(b)	Convert S-R flip-flop in D flip-flop. 7
	Design a synchronous mod-6 counter. Use J-K flip-
(α)	flop for designing the counter.
(h)	C. Duarr and avnlain
(0)	the logic diagram of serial in serial out shift right
	register.
	(a) (b)

3.

4.

5.

Unit IV

- (a) Explain the working of R-2R ladder Digital to Analog Converter.
 - (b) Describe the working of successive approximation type ADC.
- 8. (a) Draw the diagram of basic RAM cell. Explain SRAM and DRAM memories. Also describe, how read and write operations occur in RAM.
 - (b) Draw the block diagram of memory device. Mention the working of ROM. Also draw diagram showing ROM array.