
Topperworld

C++
Digital Notes

Good Things, Take Times

3 C++ by Er

CONTENTS

Chapter No Chapter Name Page No

Chapter 1 Introduction 1

Chapter 2 Class and Object 30

Chapter 3 Inheritance 48

Chapter 4 Polymorphism 64

Chapter 5 Operator Overloading 73

Chapter 6 Exception Handling 82

Chapter 7 Dynamic Memory Management 92

Chapter 8 Templates 99

Chapter 9 Standard Template Library 107

Chapter 10 Namespace 112

 Previous Year BPUT Questions 120

,Topperworld

4 C++

Chapter 1

Procedure/ structure oriented Programming

• Conventional programming, using high level languages such as COBOL, FORTRAN and C, is

commonly known as procedure-oriented programming (POP).

• In the procedure-oriented approach, the problem is viewed as a sequence of things to be done

such as reading, calculating and printing. A number of functions are written to accomplish these

tasks.

• The primary focus is on functions.

Object Oriented Programming

• Emphasis is on data rather than procedure.

• Programs are divided into what are known as objects.

• Data is hidden and cannot be accessed by external functions.

• Objects may communicate with each other through functions.

• New data and functions can be easily added whenever necessary.

Global Data Global Data

Function-1 Function-2

Local Data

Function-3

Local Data Local Data

Data

Functions Functions

Object A

Data

Object C

Data

Functions

Object B

,by - Topperworld

5 C++

Basic Concepts of Object-Oriented Programming

Objects
Objects are the basic runtime entities in an object oriented system. They may represent a person, a

place, a bank account, a table of data or any item that the program has to handle.

Class
Object contains data, and code to manipulate that data. The entire set of data and code of an object

can be made a user-defined data type with the help of a class.

Data Encapsulation
� The wrapping up of data and functions into a single unit is known as encapsulation.

� The data is not accessible to the outside world, only those function which are wrapped in the

can access it.

� These functions provide the interface between the object’s data and the program.

� This insulation of the data from direct access by the program is called data hiding or

information hiding.

Data Abstraction

� Abstraction refers to the act of representing essential features without including the

background details or explanations.

� Since classes use the concept of data abstraction, they are known as Abstract Data Types

(ADT).

Inheritance
� Inheritance is the process by which objects of one class acquire the properties of objects of

another class.

� In OOP, the concept of inheritance provides the idea of reusability. This means we can add

additional features to an existing class without modifying it.

Polymorphism
� Polymorphism, a Greek term means to ability to take more than one form.

� An operation may exhibits different behaviors in different instances. The behavior depends

upon the type of data used in the operation.

� For example consider the operation of addition for two numbers; the operation will generate a

sum. If the operands are string then the operation would produce a third string by

concatenation.

� The process of making an operator to exhibit different behavior in different instances is known

operator overloading.

,by - Topperworld

6 C++

Output and Input Statement in C++

An Output statement is used to print the output on computer screen. cout is an output statement.

cout<<”Srinix College of Engineering”; prints Srinix College of Engineering on computer screen.

cout<<”x”; print x on computer screen.

cout<<x; prints value of x on computer screen.

cout<<”\n”; takes the cursor to a newline.

cout<< endl; takes the cursor to a newline. We can use endl (a manipulator) instead of \n.

<< (two "less than" signs) is called insertion operator.

An Input statement is used to take input from the keyboard. cin is an input statement.

cin>>x; takes the value of x from keyboard.

cin>>x>>y; takes value of x and y from the keyboard.

 WAP to accept an integer from the keyboard and print the number when it is

multiplied by 2.

Solution:

#include <iostream.h>

void main ()

{

 int x;

 cout << "Please enter an integer value: ";

 cin >>x;

 cout <<endl<< "Value you entered is " <<x;

 cout << " and its double is " <<x*2 << ".\n";

}

Output:

Please enter an integer value:

Shape

Draw ()

Triangle Object

Draw (Triangle)

Box Object

Draw (Box) Draw (circle)

Circle Object

Program 1.1

,by - Topperworld

7 C++

5

Value you entered is 5 and its double is 10.

Operators

1. Arithmetic Operators (+, -, *, /, %)

The five arithmetical operations supported by the C language are:

Addition (+)

Subtraction (-)

Multiplication (*)

Division (/)

Modulo (%)

Operations of addition, subtraction, multiplication and division literally correspond with their respective

mathematical operators.

Division Rule

Integer/integer=integer

Integer/float=float

Float/integer=float

Float /float=float

Modular division

a>=b a%b =remainder when a is divided by b

a<b a

 Write a program to demonstrate arithmetic operation.

Solution:

#include <iostream.h>

void main ()

{

int a, b, p, q, r, s;

a = 10;

b=4;

p= a/b;

q= a*b;

r= a%b;

s= b%a;

cout<<p<<q<<r<<s;

}

Output:

2 40 2 4

Program 1.2

,by - Topperworld

8 C++

2. Assignment Operator (=)
The assignment operator assigns a value to a variable.

a = 5;

This statement assigns the integer value 5 to the variable a. The part at the left of the assignment

operator (=) is known as the lvalue (left value) and the right one as the rvalue (right value). The lvalue

has to be a variable whereas the rvalue can be either a constant, a variable, the result of an operation or

any combination of these. The most important rule when assigning is the right-to-left rule: The

assignment operation always takes place from right to left,

and never the other way:

a = b;

This statement assigns to variable a (the lvalue) the value contained in variable b (the rvalue). The value

that was stored until this moment in a is not considered at all in this operation, and in fact that value is
lost.

Shorthand assignment (+=, -=, *=, /=, %=, >>=, <<=, &=, ^=, |=)

When we want to modify the value of a variable by performing an operation on the value currently

stored in that variable we can use compound assignment operators:

value += increase; is equivalent to value = value + increase;

a -= 5; is equivalent to a = a - 5;

a /= b; is equivalent to a = a / b;

price *= units + 1; is equivalent to price = price * (units + 1); and the same for all other operators.

3. Relational and equality operators (==, !=, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational and equality

operators. The result of a relational operation is a Boolean value that can only be true or false,

according to its Boolean result. We may want to compare two expressions, for example, to know if they

are equal or if one is greater than the other is. Here is a list of the relational and equality operators that

can be used in C++:

Here there are some examples:

(7 == 5) // evaluates to false.

(5 > 4) // evaluates to true.

(3 != 2) // evaluates to true.

(6 >= 6) // evaluates to true.

(5 < 5) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid expression, including variables.

Suppose that a=2, b=3 and c=6,

(a == 5) // evaluates to false since a is not equal to 5.

(a*b >= c) // evaluates to true since (2*3 >= 6) is true.

(b+4 > a*c) // evaluates to false since (3+4 > 2*6) is false.

((b=2) == a) // evaluates to true.

Important Tips!

Be careful! The operator = (one equal sign) is not the same as the operator == (two equal signs), the first

one is an assignment operator (assigns the value at its right to the variable at its left) and the other one

,by - Topperworld

9 C++

(==) is the equality operator that compares whether both expressions in the two sides of it are equal to

each other. Thus, in the last expression ((b=2) == a), we first assigned the value 2 to b and then we

compared it to a, that also stores the value 2, so the result of the operation is true.

4. Logical operators (!, &&, ||)

The Operator! is the C++ operator to perform the Boolean operation NOT, it has only one operand,

located at its right, and the only thing that it does is to inverse the value of it, producing false if its

operand is true and true if its operand is false. Basically, it returns the opposite Boolean value of

evaluating its operand.

For example: !(5 == 5) // evaluates to false because the expression at its right (5 == 5) is true. !(6 <= 4) //

evaluates to true because (6 <= 4) would be false. !true // evaluates to false. !false // evaluates to true.

The logical operators && and || are used when evaluating two expressions to obtain a single relational

result. The operator && corresponds with Boolean logical operation AND. This operation results true if

both its two operands are true, and false otherwise. The following panel shows the result of operator

&& evaluating the expression a && b:

a b a && b

True True True

True False False

False True False

False False False

The operator || corresponds with Boolean logical operation OR. This operation results true if either one

of its two operands is true, thus being false only when both operands are false themselves. Here are the

possible results of a || b:

a b a || b

True True True

True False True

False True True

False False False

For example:

((5 == 5) && (3 > 6)) // evaluates to false (true && false).

((5 == 5) || (3 > 6)) // evaluates to true (true || false).

5. Increment and Decrement Operator (++, --)

The increment operator (++) and the decrement operator (--) increase or reduce by one the value stored

in a variable. They are equivalent to +=1 and to - =1, respectively. Thus:

c++;

c+=1;

c=c+1;

,by - Topperworld

10 C++

are all equivalent in its functionality: the three of them increase by one the value of c.

A characteristic of this operator is that it can be used both as a prefix and as a suffix. That means that it

can be written either before the variable identifier (++a) or after it (a++). Although in simple expressions

like a++ or ++a both have exactly the same meaning, in other expressions in which the result of the

increase or decrease operation is evaluated as a value in an outer expression they may have an

important difference in their meaning: In the case that the increase operator is used as a prefix (++a) the

value is increased before the result of the expression is evaluated and therefore the increased value is

considered in the outer expression; in case that it is used as a suffix (a++) the value stored in a is

increased after being evaluated and therefore the value stored before the increase operation is

evaluated in the outer expression.

Pre

Post

First increment/decrement then assignment.

First assignment then increment/decrement.

Notice the difference:

 Find the value of A and B.

B=3;

A=++B;

Ans: A contains 4, B contains 4

 Find the value of A and B.

B=3;

A=B++;

Ans: A contains 3, B contains 4

In Example 1, B is increased before its value is assigned to A. While in Example 2, the value of B is

assigned to A and then B is increased.

6. Conditional operator (? :)

The conditional operator evaluates an expression returning a value if that expression is true and a

different one if the expression is evaluated as false. Its format is: condition ? result1 : result2. If

condition is true the expression will return result1, if it is not it will return result2.

7==5 ? 4 : 3 // returns 3, since 7 is not equal to 5.

7==5+2 ? 4 : 3 // returns 4, since 7 is equal to 5+2.

5>3 ? a : b // returns the value of a, since 5 is greater than 3.

a>b ? a : b // returns whichever is greater, a or b.

 Write a program to find the greatest of two numbers.

Solution:

#include <iostream.h>

Example 1

Example 2

Program 1.3

,by - Topperworld

11 C++

void main ()

{

int a,b,c;

a=2;

b=7;

c = (a>b) ? a : b;

cout<<c;

}

Output: 7

In this example a was 2 and b was 7, so the expression being evaluated (a>b) was not true, thus the first

value specified after the question mark was discarded in favor of the second value (the one after the

colon) which was b, with a value of 7.

7. Comma operator (,)

The comma operator (,) is used to separate two or more expressions that are included where only one

expression is expected. When the set of expressions has to be evaluated for a value, only the rightmost

expression is considered.

For example, the following code:

a = (b=3, b+2); would first assign the value 3 to b, and then assign b+2 to variable a. So, at the end,

variable a would contain the value 5 while variable b would contain value 3.

8. Explicit type casting operator

Type casting operators allow you to convert a datum of a given type to another. There are several ways

to do this in C++. The simplest one, which has been inherited from the C language, is to precede the

expression to be converted by the new type enclosed between parentheses (()):

int i;

float f = 3.14;

i = (int) f;

The previous code converts the float number 3.14 to an integer value (3), the remainder is lost. Here,

the typecasting operator was (int). Another way to do the same thing in C++ is using the functional

notation: preceding the expression to be converted by the type and enclosing the expression between

parentheses:

i = int (f);

Both ways of type casting are valid in C++.

9. sizeof ()

This operator accepts one parameter, which can be either a type or a variable itself and returns the size

in bytes of that type or object:

a = sizeof (char);

This will assign the value 1 to a because char takes 1 byte of memory. The value returned by sizeof is a

constant, so it is always determined before program execution.

,by - Topperworld

12 C++

Control Statements

A programming language uses control statements to cause the flow of execution to advance and

branch based on changes to the state of a program. C++ program control statements can be put into

the following categories: selection, iteration, and jump.

� Selection statements allows program to choose different paths of execution based upon the

outcome of an expression or the state of a variable.

� Iteration statements enable program execution to repeat one or more statements (that is,

iteration statements form loops).

� Jump statements allows program to execute in a nonlinear fashion. All of Java’s control

statements are examined here.

Selection Statements

1. if Statement

The if statement is C++’s conditional branch statement. It can be used to route program execution

through two different paths. Here is the general form of the if statement:

if (condition)

{

statement1;

}

else

{

statement2;

}

Here, each statement may be a single statement or a compound statement enclosed in curly braces

(that is, a block). The condition is any expression that returns a boolean value. The else clause is

optional. The if statement works like this:

 If the condition is true, then statement1 is executed. Otherwise, statement2 (if it exists) is executed.

 WAP to check whether a person is old or young. A person will be said old if his

age is above 35 and young if his age is below 35.

Solution:

#include<iostream.h>

void main()

{

int age;

cout<<”Enter Age”;

Program 1.4

,by - Topperworld

13 C++

cin>>age;

if(age>=35)

cout<<"Old";

else

cout<<”Young”;

}

Output:

Enter age 39

Old

2. Nested ifs

A nested if is an if statement that is the target of another if or else. Nested ifs are very common in

programming. When you nest ifs, the main thing to remember is that an else statement always refers

to the nearest if statement that is within the same block as the else and that is not already associated

with an else.

3. The if-else-if Ladder

A common programming construct that is based upon a sequence of nested ifs is the if-else-if ladder. It

looks like this:

if (condition1)

statement1;

else if (condition2)

statement2;

………………………..

………………………..

else

statement3;

The if statements are executed from the top to down. As soon as one of the conditions controlling the if

is true, the statement associated with that if is executed, and the rest of the ladder is bypassed. If none

of the conditions is true, then the final else statement will be executed.

 Write a program to calculate division obtained by a student with his percentage

mark given.

Solution:

#include<iostream.h>

void main()

{

int mark;

Program 1.5

,by - Topperworld

14 C++

cout<<”Enter mark”;

cin>>mark;

if(mark>=60)

cout<<”1st Division”;

else if(mark>=50 && mark<60)

cout<<”2nd Division”;

else if(mark>=40 && mark<50)

cout<<”3rd Division”;

else

cout<<”Fail”;

}

Output:

Enter mark 87

1st Division

Switch Statements

The switch statement is C++’s multi way branch statement. It provides an easy way to dispatch

execution to different parts of your code based on the value of an expression. As such, it often provides

a better alternative than a large series of if-else-if statements. Here is the general form of a switch

statement:

switch (expression)

 {

case value1:

// statement sequence

break;

case value2:

// statement sequence

break;

...

case valueN:

// statement sequence

break;

default:

// default statement sequence

,by - Topperworld

15 C++

}

 Write a program to illustrate the use of switch case statements.

Solution:

#include<iostream.h>

void main()

{

int i

for(int i=0; i<6; i++)

switch(i)

{

case 0:

cout<<”i is zero.”;

break;

case 1:

cout<<”i is one.”;

break;

case 2:

cout<<”i is two.”;

break;

case 3:

cout<<”i is three.”;

break;

default:

cout<<”i is greater than 3.”;

}

}

Output:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3.

Iteration Statements

Program 1.6

,by - Topperworld

16 C++

C++’s iteration statements are for, while, and do-while. These statements create what we commonly

call loops. As you probably know, a loop repeatedly executes the same set of instructions until a

termination condition is met.

1. while loop

The while loop is Java’s most fundamental looping statement. It repeats a statement or block while its

controlling expression is true. Here is its general form:

initialization

while (condition)

{

// body of loop

Increment/ decrement

}

The condition can be any Boolean expression. The body of the loop will be executed as long as the

conditional expression is true. When condition becomes false, control passes to the next line of code

immediately following the loop. The curly braces are unnecessary if only a single statement is being

repeated.

 Write a program to print the message “C++ is good” 10 times using while loop.

Solution:

#include<iostream.h>

void main()

{

int n = 0;

while (n <10)

{

cout<<”C++ is good”;

n++;

}

}

2. do while Loop

If the conditional expression controlling a while loop is initially false, then the body of the loop will not

be executed at all. However, sometimes it is desirable to execute the body of a while loop at least once,

even if the conditional expression is false to begin with. The do-while loop always executes its body at

least once, because its conditional expression is at the bottom of the loop. Its general form is:

initialization

do

{

// body of loop

Program 1.7

,by - Topperworld

17 C++

Increment/ decrement

} while (condition);

 Write a program to print the message “C++ is good” 10 times using do while loop.

Solution:

#include<iostream.h>

void main()

{
int n = 0;

do

{

cout<<”C++ is good”;

n++;

} while(n<9);

}

3. for loop

The general form of the for statement is:

for(initialization; condition; iteration)

 {

// body

}

The for loop operates as follows:

� When the loop first starts, the initialization portion of the loop is executed. Generally, this is an

expression that sets the value of the loop control variable, which acts as a counter that controls

the loop. It is important to understand that the initialization expression is only executed once.

� Next, condition is evaluated. This must be a Boolean expression. It usually tests the loop control

variable against a target value. If this expression is true, then the body of the loop is executed. If

it is false, the loop terminates.

� Next, the iteration portion of the loop is executed. This is usually an expression that increments

or decrements the loop control variable. The loop then iterates, first evaluating the conditional

expression, then executing the body of the loop, and then executing the iteration expression

with each pass. This process repeats until the controlling expression is false.

 Write a program to print the message “C++is good” 10 times using for loop.

Solution:

#include<iostream.h>

void main()

{

int n ;

Program 1.8

Program 1.9

,by - Topperworld

18 C++

for(n=0; n<10; n++)

{

cout<<”C++ is good”;

}

}

Jump Statements

C++ offers following jump statements:

� break statement: A break statement takes control out of the loop.

� continue statement: A continue statement takes control to the beginning of the loop.

� goto statement: A goto Statement take control to a desired line of a program.

 Write a program to check whether a number is prime or not.

Solution:

#include<iostream.h>

void main()

{

int n, i;
cout<<”Enter a number:”;

cin>>n;

for(i=2; i<n; i++)

{

if(n%i==0)

{

cout<<”Number is not Prime”;

break;

}

}

if(i==n)

cout<<”Number is Prime”;

}

Output:

Enter a number 13

Number is Prime

 The marks obtained by a student in 5 different subjects are input through the

keyboard. The student gets a division as per the following rules:

Percentage above or equal to 60 - First division

Percentage between 50 and 59 - Second division

Percentage between 40 and 49 - Third division

Percentage less than 40 – Fail. Write a program to calculate the division obtained by the student.

Solution:

 #include<iostream.h>

Program 1.10

Program 1.11

,by - Topperworld

19 C++

void main()

{

int m1, m2, m3, m4, m5, per ;

cout<< "Enter marks in five subjects " ;

cin>>m1>>m2>>m3>>m4>>m5 ;

per = (m1 + m2 + m3 + m4 + m5) / 5 ;

if (per >= 60)

{

cout<< "First division" ;

}

else if ((per >= 50) && (per < 60))

{

cout<< "Second division" ;

}

else if ((per >= 40) && (per < 50))

{

cout<<"Third division" ;

}

else

{

cout<< "Fail" ;

}

}

Output:

Enter marks in 5 subjects 65 65 65 60 70

First division

 Write a program to find the roots of a quadratic equation ax2+bx+c=0, where the

values of coefficient a, b and c are given from the keyboard.

Solution:

 #include<iostream.h>

#include<math.h>

void main()

{

int a, b, c, d;

float r1, r2, x, y;

cout<<“Enter the coefficients”;

cin>>a>>b>>c;

d=(b*b) - (4*a*c);

if(d>0)

Program 1.12

,by - Topperworld

20 C++

{

r1=(-b+pow(d,0.5))/2*a;

r2=(-b- pow(d,0.5))/2*a;

cout<<”Roots are real and the roots are ”<<r1<<” and ”<<r2;

}

else if(d==0)

{

r1=-b/2*a;

cout<< “Roots are equal and the root is “<<r1;

}

else

{

x=-b/2*a;

y =pow(-d,0.5)/2*a;

cout<<”Roots are imaginary and the roots are”<<endl;

cout<<x<<“+i ”<<y<<endl;

cout<<x<<“-i ”<< y;

}

}

Output:

Enter the coefficients 1 -4 4

Roots are equal and the root is 2

 If the three sides of a triangle are entered through the keyboard, write a

program to check whether the triangle is isosceles, equilateral, scalene or right angled triangle.

Solution:

#include<iostream.h>

void main()

{

int a, b, c;

cout<<“Enter 3 sides”;

cin>>a>>b>>c;

if(a+b>c && b+c>a && c+a>b)

{

if((a*a+b*b)==c*c || (b*b+c*c)==a*a || (c*c+a*a)==b*b)

{

cout<<“Right Angled”;

}

else if((a==b &&b!=c) || (b==c&&c!=a) || (c==a&&a!=b))

{

Program 1.13

,by - Topperworld

21 C++

cout<<“Isosceles”;

}

else if(a==b && b==c)

{

cout<<“Equilateral”;

}

else

{

cout<<“Any Valid Triangle”;

}

}

else

{

cout<<“Cannot form a valid triangle”;

}

}

 Write a program to print all the even integers from 1 to 100.

 Solution:

#include<iostream.h>

void main()

{

int i;

for(i=0; i<100 ; i+=2)

{

cout<< i<<“\n”;

}

}

 WAP to Compute 1+2+3+4+………………….+n for a given value of n.

Solution:

#include<iostream.h>

void main()

{

int i, n, s=0;

cout<<“Enter the value of n”;

cin>>n;

for(i=1; i<=n; i++)

{

Program 1.14

Program 1.15

,by - Topperworld

22 C++

s=s+i;

}

cout<< s;

}

 Write a program to compute factorial of a number.

Solution:

#include<iostream.h>

void main()

{

int i, n, f=1;

cout<<“Enter the value of n”;

cin>>n;

for(i=1; i<=n; i++)

{

f=f*i;

}

cout<<f;

}

 Write a program to find sum of digits of a number.

Solution:

#include<iostream.h>

void main()

{

int a, n, s=0;

cout<<“Enter a number”;

cin>>n;

while(n!=0)

{

a=n%10;

s=s+a;

n=n/10;

}

cout<<s;

}

 Write a program to reverse a number.

Solution:

Program 1.16

Program 1.17

Program 1.18

,by - Topperworld

23 C++

#include<iostream.h>

void main()

{

int a, n, rn=0;

cout<<“Enter a number”;

cin>>n;

while(n!=0)

{

a=n%10;

rn=rn*10+a;

n=n/10;

}

cout<<rn;

}

 Write a program to check whether a no is palindrome number or not. (A number

is said to be palindrome number if it is equal its reverse

Solution:

#include<iostream.h>

void main()

{

int a, n, rn=0, b;

cout<<“Enter a number”;

cin>>n;

b=n;

while(n!=0)

{

a=n%10;

rn=rn*10+a;

n=n/10;

}

if(b==rn)

{

cout<<“palindrome”;

}

else

{

cout<<“not palindrome”;

}

}

Example 1.19

,by - Topperworld

24 C++

 Write a program to check whether a no is Armstrong number or not. (A number

is said to be Armstrong number if sum of cube of its digit is equal to that number).

Solution:

#include<iostream.h>

void main()

{

int a, n,s=0, b;

cout<<“Enter a number”;

cin>>n;

b=n;

while(n!=0)

{

a=n%10;

s=s+a*a*a;

n=n/10;

}

if(b==s)

{

cout<<“Armstrong”;

}

else

{

cout<<“Not Armstrong”;

}

}

 Write a program to print all the prime numbers from 1 to 500.

Solution:

#include<iostream.h>

void main()

{

int n, i ;

for(n=2; n<=500; n++)

{

for(i=2; i<=n-1; i++)

{

if (n% i == 0)

{

break ;

Example 1.20

Example 1.21

,by - Topperworld

25 C++

}

}

if (i == n)

{

cout<<n<< "\t" ;

}

}

}

Array

Collection of similar data types stored in contiguous memory location is known as array.

Syntax is:Data_type array_name[size];

i.e. int a[20]; means a is an array which can hold 20 integers. char nm[16]; means nm is an array which

can hold 16 character. An array index always starts from 0 and index of last element is n-1, where n is

the size of the array.

In the above example:

a[0] is the first element.

a[1] is the second element………….

And a[19] is the last element of the array a.

Structure

A structure is a collection of dissimilar data types.

struct book

{

char name ;

float price ;

int pages ;

} ;

struct book b1, b2, b3 ;

Here b1, b2 and b3 are structure variable of type book. And name, price and pages are called structure

members. To access a structure member we need dot(.) operator.

b1.name - name of book b1.

b1.price – price of book b1.

b1.pages – price of book b1.

,by - Topperworld

26 C++

Union

A union is a collection of dissimilar datatypes.

union book

{

char name ;

float price ;

int pages ;

} ;

unionbook b1, b2, b3 ;

Here b1, b2 and b3 are union variable of type book.

Here b1, b2 and b3 are union variable of type book. And name, price and pages are called union

members. To access a union member we need dot(.) operator.

b1.name - name of book b1.

b1.price – price of book b1.

b1.pages – price of book b1.

Difference between structure and union

Structure Union

1) Syntax:

struct structure_name

{

//Data types

}

2) All the members of the structure can

be accessed at once.

3) Structure allocates the memory equal

to the total memory required by the

members.

struct example{

 int x;

 float y;

}

Here memory allocated is size

of(x)+sizeof(y).

1) Syntax:

union union_name

{

//Data types

}

2) In a union only one member can be used at a

time.

3) Union allocates the memory equal to the

maximum memory required by the member of

the union.

union example{

 int x;

 float y;

}

Here memory allocated is sizeof(y), because

size of float is more than size of integer.

Function

A function is a self-contained block of statements that perform a coherent task of some kind. Basically

a function consists of three parts:

,by - Topperworld

27 C++

Function prototype: Function prototype is the skeleton of a function.

Syntax is: return_type function_name(type of arguments);

Example: int add(int, int); void display(void);

Function Calling: A function gets called when the function name is followed by a semicolon.

Syntax is : function_name(list of arguments);

Example: sum(x,y); search(mark);

Function Definition: A function is defined when function name is followed by a pair of braces in

which one or more statements may be present.

Syntax is:

Return_type function_name(list of arguments with their types)

{

//Function Body

}

Call by value and call by reference

� In call by value, value of the argument is passed during function calling. In call by reference

address of the argument is passed during function calling.

� In call by value of actual arguments do not changes. But in call by reference value of actual

argument changes.

� Memory can be saved if we call a function by reference.

 Write a program to swap two integers using call by value and call by

reference.

Solution:

Call by value Call by refernece

#include<iostream.h>

void swap(int, int);

void main()
{

int x=5, y=7;

swap(x, y);

cout<<x<<y<<endl;

}

void swap(int a, int b)

{

int t=a;

a=b;

b=t;

cout<<a<<b;

#include<iostream.h>

void swap(int *, int *);

void main()
{

int x=5, y=7;

swap(&x, &y);

cout<<x<<y<<endl;

}

void swap(int *a, int *b)

{

int t=*a;

*a=*b;

*b=t;

cout<<*a<<*b;

Program 1.22

,by - Topperworld

28 C++

}

Output:

5 7

7 5

}

Output:

7 5

7 5

Default arguments

� C++ allows us to call a function without specifying all its arguments.

� In such cases function assigns a default value to the parameter which does not have a matching

argument in the function call.

� Default values are specified when the function is declared.

Consider the following function prototype:

float amount(int principal, int period, float rate=0.15);

We can call the above function by amount (5000, 7);. Here default value 0.15 will be assigned to the

third argument. We must add default values from right to left.

int Add(int i, int j=5, int k=10); // legal

int Add(int i=5, int j); // illegal

int Add(int i=0, int j, int k=10); // illegal

int Add(int i=2, int j=5, int k=10); // legal

,by - Topperworld

29 C++

Short Type Questions

1. What is a structure and how to define and declare a structure?

2. What are the advantages of using unions?

3. Can we initialize unions?

4. Why can’t we compare structures?

5. Define array and pointer?

6. Define keyword.

7. Differentiate between = and ==.

8. Differentiate between while loop and do while loop.

9. Define loop. Write the syntax of for loop.

10. Differentiate between const and volatile.

Long Type Questions

1. Why structure is used instead of union? Write the difference between structure and union.

2. What is the difference between procedure oriented programming and object oriented

programming?

3. Describe the basic concepts of object oriented programming briefly.

4. Describe different types of operators in c++.

5. What is pointer? Differentiate between call by value and call by reference.

6. Explain function prototype, function calling and function definition with suitable examples.

7. Write a program to find factorial of a number.

8. Write a program to find largest among a list of integers stored in an array.

9. Using structure, write a program to find addition of two complex number.

10. Write a program to check whether a number is Armstrong or not?

11. Write a program to reverse a number using function recursion.

12. Write both recursive and non recursive function to find gcd of two integers.

13. Write a program to print fibonacii sequence up to 50 terms. (Assume, first two terms of

fibonacii sequence are 0 and 1 respectively.)

14. Write a program to print all integers from 1 to n using recursion, where the value of n is supplied

by the user.

15. Write a program to convert a 2×2 matrix into 3×3 matrix, where a new row element is obtained

by adding all elements in that row, a new column element is obtained by adding all elements in

that column and the diagonal element is obtained by summing all diagonal elements of given

2×2 matrix.

Assignment-1

,by - Topperworld

30 C++

Chapter 2

Class and Object

A class is a way to bind the data and its associated functions together. It allows the data and functions

to be hidden, if necessary, from external use. A class declaration is similar syntactically to a structure.

General form of a class declaration is:

class class_name

{

private:

Variable declaration/data members;

Function declaration/ member functions;

protected:

Variable declaration/data members;

Function declaration/ member functions;

public:

Variable declaration/data members;

Function declaration/ member functions;

};

Private members can be accessed only from within

the class.

Protected members can be accessed by own class

and its derived classes.

Public members can be accessed from outside the

class also.

Points to remember!

� The variables declared inside the class definition are known as data members and the functions

declared inside a class are known as member functions.

� Wrapping of data and function and function into a single unit (i.e. class) is known as data

encapsulation.

� By default the data members and member function of a class are private.

� Private data members can be accessed by the functions that are wrapped inside the class.

General steps to write a C++ program using class and object:

� Header files

� Class definition

� Member function definition

� void main function

 Write a program to find sum of two integers using class and object.

Solution:

#include<iostream.h>

Program 2.1

,by - Topperworld

31 C++

class Add

{

int x, y, z;

public:

void getdata()

{

cout<<”Enter two numbers”;

cin>>x>>y;

}

void calculate(void);

void display(void);

};

void Add :: calculate()

{

z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Add a;

a.getdata();

a.calculate();

a.display();

}

Output:

Enter two numbers 5 6

11

A member function can be defined:

(i) Inside the class definition
(ii) Outside side the class definition using scope resolution operator (::).

,by - Topperworld

32 C++

� Here in the above example we are defining the member function getdata() inside the class

definition. And we are defining the member functions calculate() and display(), outside the class

definition using the scope resolution operator.

� Here void Add :: calculate() means the scpoe of member function calculate() is inside the class

Add or we can say the function calculate() belongs to the class Add. :: is the scope resolution

operator which tells the scope of a member function.

� We cannot directly call a function, we can call it using object (through . operator) of the class in

which the function is declared.

How to access member of a class?

To access member of a class dot operator is used. i.e.

object-name.data-member and

object-name.member-function

Application of Scope resolution operator (::)

� It is used to specify scope of a member function.

� It is used to access a global variable.

Object as Function argument

 Write a program to add two time objects (in the form hh:mm).

Solution:

#include<iostream.h>

class time

{

int hours, minutes;

public:

void gettime(int h, int m)

{

hours=h;

minutes=m;

}

void sum(time, time);

void display(void);

};

void time :: sum (time t1, time t2)

{

minutes=t1.minutes+t2.minutes;

hours=minutes/60;

Program 2.2

,by - Topperworld

33 C++

minutes=minutes%60;

hours=hours+t1.hours+t2.hours;

}

void time :: display()

{

cout<<hours<<” : ”<<minutes<<endl;

}

void main()

{

time T1, T2, T3;

T1.gettime(2,45);

T2.gettime(3,30);

T3.sum(T1, T2);

T1.display();

T2.display();

cout<<"Addition of above two time is ";

T3.display();

}

Output:

2 : 45

3 : 15

Addition of above two time is 6:15

Array of object

Collection of similar types of object is known as array of objects.

 Write a program to input name and age of 5 employees and display them.

Solution:

#include<iostream.h>

class Employee

{

char name[30];

int age;

public:

void getdata(void);

void putdata(void);

};

Program 2.3

,by - Topperworld

34 C++

void Employee:: getdata(void)

{

cout<<”Enter Name and Age:”;

cin>>name>>age;

}

void Employee:: putdata(void)

{

cout<<name<<”\t”<<age<<endl;

}

void main()

{

Employee e[5];

int i;

for(i=0; i<5; i++)

{

e[i].getdata();

}

for(i=0; i<5; i++)

{

e[i].putdata();

}

}

Output:

Enter Name and Age: Rajib 25

Enter Name and Age: Sunil 27

Enter Name and Age: Ram 23

Enter Name and Age: Bibhuti 26

Enter Name and Age: Ramani 32

Rajib 25

Sunil 27

Ram 23

Bibhuti 26

Ramani 32

Constructor

� A constructor is a special member function whose task is to initialize the object of a class.

� Its name is same as the class name.

� A constructor does not have a return type.

,by - Topperworld

35 C++

� A constructor is called or invoked when the object of its associated class is created.

� It is called constructor because it constructs the values of data members of the class.

� A constructor cannot be virtual (shall be discussed later on).

� A constructor can be overloaded.

There three types of constructor:

(i) Default Constructor

(ii) Parameterized Constructor

(iii) Copy constructor

Default Constructor

The constructor which has no arguments is known as default constructor.

 Demonstration of default Constructor.

Solution:

#include<iostream.h>

class Add

{

int x, y, z;

public:

Add(); // Default Constructor

void calculate(void);

void display(void);

};

Add::Add()

{

x=6;

y=5;

}

void Add :: calculate()

{
z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Add a;

a.calculate();

Program 2.4

,by - Topperworld

36 C++

a.display();

}

Output:

11

Note: Here in the above program when the statement Add a; will execute (i.e. object is created), the

default constructor Add () will be called automatically and value of x and y will be set to 6 and 5

respectively.

Parameterized constructor

The constructor which takes some argument is known as parameterized constructor.

 Write a program to initialize two integer variables using parameterized

constructor and add them.

Solution:

#include<iostream.h>

class Add

{

int x, y, z;

public:

Add(int, int);

void calculate(void);

void display(void);

};

Add :: Add(int a, int b)

{

x=a;

y=b;

}

void Add :: calculate()

{

z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Program 2.5

,by - Topperworld

37 C++

Add a(5, 6);

a.calculate();

a.display();

}

Output:

11

Note: Here in the above program when the statement Add a(5, 6); will be executed (i.e. object

creation), the parameterized constructor Add (int, int) will be called automatically and value of x and y

will be set to 5 and 6respectively.

A parameterized constructor can be called:

(i) Implicitly: Add a(5, 6);

(ii) Explicitly :Add a=Add(5, 6);

If the constructor has one argument, then we can also use object-name=value-of-argument; instead of

object-name (value-of-argument); to initialize an object.

What is Dynamic Initialization of an object?

The initialization of an object at the time of execution of program is known as dynamic initialization of

an object. It is achieved by parameterized constructor.

Copy Constructor

The constructor which takes reference to its own class as argument is known as copy constructor.

 Write a program to initialize two integer variables using parameterized

constructor. Copy given integers into a new object and add them.

Solution:

#include<iostream.h>

class Add

{

int x, y, z;

public:

Add()

 {

 }

Add(int a, int b)

{

x=a;

y=b;

Program 2.6

,by - Topperworld

38 C++

}

Add(Add &);

void calculate(void);

void display(void);

};

Add :: Add(Add &p)

{

 x=p.x;

y=p.y;

cout<<”Value of x and y for new object: ”<<x<<” and ”<<y<<endl;

}

void Add :: calculate()

{

z=x+y;

}

void Add :: display()

{

cout<<z;

}

void main()

{

Add a(5, 6);

Add b(a);

b.calculate();

b.display();

}

Output:

Value of x and y for new object are 5 and 6

11

Note: Here in the above program when the statement Add a(5, 6); will execute (i.e. object creation), the

parameterized constructor Add (int, int) will be called automatically and value of x and y will be set to 5

and 6respectively. Now when the statement Add b(a) ; will execute, the copy constructor Add(Add&)

will be called and the content of object a will be copied into object b.

What is Constructor Overloading?

If a program contains more than one constructor, then constructor is said to be overloaded.

,by - Topperworld

39 C++

Destructor

� It is a special member function which is executed automatically when an object is destroyed.

� Its name is same as class name but it should be preceded by the symbol ~.

� It cannot be overloaded as it takes no argument.

� It is used to delete the memory space occupied by an object.

� It has no return type.

� It should be declared in the public section of the class.

 Demonstration of Destructor.

Solution:

#include<iostream.h>

class XYZ

{

int x;

public:

XYZ();

~XYZ();

void display(void);

};

XYZ::XYZ()

{

x=9;

}

XYZ:: ~XYZ()

{

cout<<”Object is destroyed”<<endl;

}

void XYZ::display()

{

cout<<x;

}

void main()

{

XYZ xyz;

xyz.display();

}

Output:

9

Object is destroyed.

Program 2.7

,by - Topperworld

40 C++

Inline function

In C++, we can create short functions that are not actually called, rather their code is expanded in line at

the point of each invocation. This process is similar to using a function-like macro. To cause a function

to be expanded in line rather than called, precede its definition with the inline keyword.

� A function which is expanded in a line when it is called is called inline function.

� It executes faster than other member function.

� It can be recursive.

� Its body does not contain if else, switch, loop, goto statement.

� The inline keyword is preceded by function definition.

Why inline function is used?

Whenever a function is called, control jumps to definition part of the function. During this jumping of

control, a significant amount of time is required. For functions having short definition if it is called

several time, huge amount of time will be lost. Therefore we declare such function as inline so that

when the function is called, rather than jumping to the definition of function, function definition is

expanded in a line wherever it is called.

 Write a program to find area of a circle using inline function.

Solution:

#include<iostream.h>

inline float area(int);

void main()

{

int r;

cout<<“ Enter the Value of r: ”;

cin>>r;

cout<<” Area is: “ << area(r);

}

inline float area (int a)

{

return(3.14*a*a);

}

Output:

Enter the Value of r:

7

153.86

Program 2.8

,by - Topperworld

41 C++

Friend Function

� Scope of a friend function is not inside the class in which it is declared.

� Since its scope is not inside the class, it cannot be called using the object of that class

� It can be called like a normal function without using any object.

� It cannot directly access the data members like other member function and it can access the

data members by using object through dot operator.

� It can be declared either in private or public part of the class definition.

� Usually it has the objects as arguments.

 Demonstration of Friend Function.

Solution:

#include<iostream.h>

class Add

{

int x, y, z;

public:

Add(int, int);

friend int calculate(Add p);

};

Add :: Add(int a, int b)

{

x=a;

y=b;

}

int calculate(Add p)

{

return(p.x+p.y);

}

void main()

{

Add a(5, 6);

cout<<calculate(a);

}

Output:

11

Note: Here the function calculate () is called directly like normal function as it is declared as friend.

Program 2.9

,by - Topperworld

42 C++

Friend Classes

It is possible for one class to be a friend of another class. When this is the case, the friend class and all of

its member functions have access to the private members defined within the other class.

#include <iostream.h>

class TwoValues

{

int a;

int b;

public:

TwoValues(int i, int j)

 {

a = i;

b = j;

}

friend class Min;

};

class Min

{

public:

int min(TwoValues x);

};

int Min::min(TwoValues x)

{

return x.a < x.b ? x.a : x.b;

}

int main()

{

TwoValues ob(10, 20);

Min m;

cout << m.min(ob);

return 0;

}

Output:

10

Note: In this example, class Min has access to the private variables a and b declared within the

TwoValues class.

,by - Topperworld

43 C++

Static Data Members

� The data member of a class preceded by the keyword static is known as static member.

� When we precede a member variable's declaration with static, we are telling the compiler that

only one copy of that variable will exist and that all objects of the class will share that variable.

Hence static variables are called class variables.

� Unlike regular data members, individual copies of a static member variable are not made for

each object. No matter how many objects of a class are created, only one copy of a static data

member exists. Thus, all objects of that class use that same variable.

� All static variables are initialized to zero before the first object is created.

� Normal data members are called object variable but static data members are called class

variables.

 Demonstration of static data members.

Solution:

#include<iostream.h>

class A

{

int p;

static int q;

public:

A();

void incr(void);

void display(void);

};

A :: A()

{

p=5;

}

int A:: q=10;

void A:: incr()

{

p++;

q++;

}

void A:: display()

{

cout<<p<<”\t”<<q<<endl;

}

void main()

Program 2.11

,by - Topperworld

44 C++

{

A a1, a2, a3;

a1.incr();

a1.display();

a2.incr();

a2.display();

a3.incr();

a3.display();

}

Output:

6 11

6 12

6 13

Note: Here p is a normal variable, whose value is 5 for all 3 objects a1, a2 and a3 (For each object,

separate copy of p exists). But q is static variable or member, whose initial value is 10 and a single copy

of q exists for all the objects.

Static Member function/method

� A static function can have access to only other static members (functions or variables) declared

in the same class. (Of course, global functions and data may be accessed by static member

functions.)

� It is accessed by class name and not by object’s name i.e. class-name::function-name;

� The function name is preceded by the keyword static.

� A static member function does not have this pointer.

� There cannot be a static and a non-static version of the same function.

� A static member function may not be virtual.

� Finally, they cannot be declared as const or volatile.

 Demonstration of static member function.

Solution:

#include<iostream.h>

class ABC

{

public:

static int add(int, int);

};

int ABC:: add(int a, int b)

{

Program 2.12

,by - Topperworld

45 C++

return(a+b);

}

void main()

{

ABC abc;

int res;

res=ABC :: add(30, 40);

cout<<res;

}

Output:

70

,by - Topperworld

46 C++

Short Type Questions

1. What is friend function? State its properties.

2. What is inline function?

3. What is static data members and static member function?
4. How a member function of a class can be accessed?

5. Differentiate between macros and inline function.

6. What are data members and member function?

7. Define copy constructor with an example.

8. Define default constructor with an example.

9. Define dynamic initialization of object. How it is achieved?

10. What is scope resolution operator? State any two applications.

Long Type Questions

1. Explain function prototype, calling and definition with suitable examples.

2. What do you mean by static data members? Discuss.

3. WAP to find greatest of 2 no’s using class and object

4. WAP to add two time objects (in the form of hh : mm :ss).

5. WAP to add two string object. The string object is initialized by following constructor. string

(char[]).

6. Define a class student with member variables as roll number and name. Generate an object and

initialize its variables using constructors and display them.

7. What is the difference between public, private and protected members of class?

8. What is a constructor? Explain about copy constructor with a suitable example.

9. What is a destructor? Explain with an example.

10. What is class and object? How a class differs from a structure?

11. Define a complex number. Write a program to read and print a complex number using class and

object.

12. What is default argument? Discuss with a suitable example.

13. A function can return more than one value. Explain.

14. What is the difference between method overriding and method overloading? Explain your

answer with suitable example.
15. How does an inline function differ from a preprocessor Macro?
16. Create a class called Employee which contains protected attributes such as emp_id, emp_salary

and emp_da. emp_da is 20% of the emp_salary. Provide an appropriate method to take user

input to initialize the attributes and display the details regarding 25 students of a class.

17. Write a complete program to create a class called Account with protected attributes such as

account number and balance. The attributes should be initialized through constructors. The

class contains a public method named as show () to display the initialized attributes. Provide a

mechanism to create an array of Account objects. The array size should be given by the user at

run time.

18. What is a copy constructor? Explain the role of a copy constructor while initializing a pointer

attribute of a class for which the memory allocation takes place at the run time.

Assignment 2

,by - Topperworld

47 C++

1. class My_College

{

float cgpa;

public:

float My_College();

};

2. class ABCD

{

public:

int INT()

{

return(1);

}

};

void main()

{

cout<<INT();

}

3. class F

{

int p;

public:

friend void print(){ }

};

void main()

{

print();

}

4. class M

{

char nm[50];

public:

show();

};

Find Output:

1. #include<iostream.h>

int x=5;

void main()

{

int x=4;

cout<<x<<::x;

}

2. #include<iostream.h>

void main()

{

int a=2, b=1;

char x=1, y=0;

if(a, b, x, y)

cout<<”Congratulations!!”;

}

3. #include<iostream.h>

int x=5;

void main()

{

(5/2)? cout<<”Hi”:cout<<”Hello”;

}

4. #include<iostream.h>

void main()

{

int a, b;

a=(b=7, b+2);

cout<<a;

}

,by - Topperworld

Find -rors (if any) and correct them:

48 C++

Chapter 3

Inheritance

It is the process by which object of one class acquires the properties of object of another class. The class

from which properties are inherited is called base class and the class to which properties are inherited is

called derived class. Inheritance can be broadly classified into:

� Single Inheritance

� Multiple Inheritance

� Multilevel Inheritance

� Hierarchical Inheritance

� Hybrid Inheritance

Base-Class Access Control

When a class inherits another, the members of the base class become members of the derived class.

Class inheritance uses this general form:

class derived-class-name : access base-class-name

{

// body of class

};

The access status of the base-class members inside the derived class is determined by access. The base-

class access specifier must be either public, private, or protected. If no access specifier is present, the

access specifier is private by default if the derived class is a class. If the derived class is a struct, then

public is the default in the absence of an explicit access specifier.

� When the access specifier for a base class is public, all public members of the base become

public members of the derived class, and all protected members of the base become protected
members of the derived class.

� When the base class is inherited by using the private access specifier, all public and protected

members of the base class become private members of the derived class.

� When a base class' access specifier is protected, public and protected members of the base

become protected members of the derived class.

In all cases, the base's private elements remain private to the base and are not accessible by members

of the derived class.

,by - Topperworld

49 C++

 Single Inheritance

In a single inheritance the derived class is derived from a single base class.

(Single inheritance)

 Example of single inheritance with base class access control as public.

Solution:

#include <iostream.h>

class A

 {

int i, j;

public:

void set(int a, int b)

{

i=a; j=b;

}

void show()

{

 cout << i << " " << j << "\n";

}

};

class B : public A

{

int k;

public:

B(int x)

{

 k=x;

}

void showk()

{

cout << k << "\n";

}

};

A

B

Program 4.1

,by - Topperworld

50 C++

void main()

{

B b(3);

b.set(1, 2);

b.show();

b.showk();

}

Output:

1 2

3

Note: Here all public and protected members of the base class become private members of the derived
class. So object of derived class cannot directly access the member function and data members of the

base class.

 Example of single inheritance with base class access control as private.

Solution:

#include <iostream.h>

class A

 {

int i, j;
public:

void set(int a, int b)

{

i=a; j=b;

}

void show()

{

 cout << i << " " << j << "\n";

}

};

class B : private A

{

int k;

public:

B(int x)

{

 k=x;
}

void showk()

{

cout << k << "\n";

}

Program 4.2

,by - Topperworld

51 C++

};

void main()

{

B b(3);

b.set(1, 2);

}

How to access the private data member of base class in derived class?

Private data members of base class can be accessed by derived class by using public member

function/methods of the base class.

Multiple Inheritance

In multiple inheritance derived class is derived from more than one base class.

 (Multiple Inheritance)

Multilevel Inheritance

In multilevel inheritance class B is derived from a class A and a class C is derived from the class B.

Syntax:

class base-class-name1

{

Data members

Member functions

};

class derived-class-name : visibility mode base-class-name

{

Data members

Member functions

B

D

A C

,by - Topperworld

b.show(); //******-ror******

52 C++

};

class derived-class-name1: visibility mode derived-class-name

{

Data members

Member functions

};

Note: visibility mode can be either private, public or protected

 (Multilevel inheritance)

Hierarchical Inheritance

In hierarchical inheritance several classes can be derived from a single base class

Syntax:

class base-class-name

{

Data members

Member functions

};

class derived-class-name1 : visibility mode base-class-name

{

Data members

Member functions

};

C

B

A

,by - Topperworld

53 C++

class derived-class-name2: visibility mode base-class-name

{

Data members

Member functions

};

Note: visibility mode can be either private, public or protected

 (Hierarchical inheritance)

Hybrid inheritance

It is the mixture of one or more above inheritance.

Constructor and Destructor Execution in Inheritance

When an object of a derived class is created, if the base class contains a constructor, it will be called

first, followed by the derived class' constructor. When a derived object is destroyed, its destructor is

called first, followed by the base class' destructor, if it exists (i.e. constructor functions are executed in

their order of derivation. Destructor functions are executed in reverse order of derivation).

A

D C B

A

B

D

C

,by - Topperworld

54 C++

 Constructor and Destructor execution in single inheritance.

Solution:

#include <iostream.h>

class base

{

public:

base()

{

cout << "Constructing base\n";

}

~base()

{

cout << "Destructing base\n";

}

};

class derived: public base

{

public:

derived()

{

cout << "Constructing derived\n";

}

~derived()

{

cout << "Destructing derived\n";

}

};

void main()

{

derived ob;

}

Output:

Constructing base

Constructing derived

Destructing derived

Destructing base

Note: In the above program, first base's constructor is executed followed by derived's. Next (because ob

is immediately destroyed in this program), derived's destructor is called, followed by base's.

Program 4.4

,by - Topperworld

55 C++

 Constructor and Destructor execution in multilevel linheritance.

Solution:

#include <iostream.h>

class base

{

public:

base()

{

cout << "Constructing base\n";

}

~base()

{

cout << "Destructing base\n";

}

};

class derived1 : public base

{

public:

derived1()

{

cout << "Constructing derived1\n";

}

~derived1()

{

cout << "Destructing derived1\n";

}

};

class derived2: public derived1

{

public:

derived2()

{

cout << "Constructing derived2\n";

}

~derived2()

{

cout << "Destructing derived2\n";

}

};

void main()

{

Program 4.5

,by - Topperworld

56 C++

derived2 ob;

}

Output:

Constructing base

Constructing derived1

Constructing derived2

Destructing derived2

Destructing derived1

Destructing base

 Constructor and Destructor execution in multiple inheritance.

 Solution:

#include <iostream.h>

class base1

{

public:

base1()

{

cout << "Constructing base1\n";

}

~base1()

{

 cout << "Destructing base1\n";

}

};

class base2

{

public:

base2()

{

cout << "Constructing base2\n";

}

~base2()

{

cout << "Destructing base2\n";

}

};

class derived: public base1, public base2

{

public:

Program 4.6

,by - Topperworld

57 C++

derived()

{

cout << "Constructing derived\n";

}

~derived()

{

cout << "Destructing derived\n";

}

};

void main()

{

derived ob;

}

Output:

Constructing base1

Constructing base2

Constructing derived

Destructing derived

Destructing base2

Destructing base1

Note: In the above program, constructors are called in order of derivation, left to right, as specified in

derived's inheritance list. Destructors are called in reverse order, right to left.

Passing Parameters to Base-Class Constructors

So far, none of the preceding examples have included constructor functions that require arguments. In

cases where only the derived class' constructor requires one or more parameters, we simply use the

standard parameterized constructor syntax. However, how do you pass arguments to a constructor in a

base class? The answer is to use an expanded form of the derived class's constructor declaration that

passes along arguments to one or more base-class constructors. The general form of this expanded
derived-class constructor declaration is shown here:

derived-constructor (arg-list) : base1(arg-list),base2(arg-list), …...,baseN(arg-list)

{

// body of derived constructor

}

Here, base1 through baseN are the names of the base classes inherited by the derived class. Notice that

a colon separates the derived class' constructor declaration from the base-class specifications, and that

the base-class specifications are separated from each other by commas, in the case of multiple base

classes.

,by - Topperworld

58 C++

 Passing Parameters to Base Class Constructors in Single Inheritance.

Solution:

#include <iostream.h>

class base

{

protected:

int i;

public:

base(int x)

{

 i=x; cout << "Constructing base\n";

}

~base()

{

cout << "Destructing base\n";

}

};

class derived: public base

{

int j;

public:

derived(int x, int y): base(y)

{

j=x; cout << "Constructing derived\n";

}

~derived()

{

cout << "Destructing derived\n";

}

void show()

{

cout << i << " " << j << "\n";

}

};

void main()

{

derived ob(3, 4);

ob.show();

}

Program 4.7

,by - Topperworld

59 C++

Virtual Base Classes

An element of ambiguity can be introduced into a C++ program when multiple base classes are

inherited. For example, consider this incorrect program:

What is Multipath Inheritance?

Multipath Inheritance is a hybrid inheritance (also called as Virtual Inheritance). It is combination of

hierarchical inheritance and multiple inheritance.

In Multipath Inheritance there is a one base class GRANDPARENT. Two derived class

PARENT1 and PARENT2 which are inherited from GRANDPARENT. Third Derived class CHILD which is

inherited from both PARENT1 and PARENT2.

Problem in Multipath Inheritance

There is an ambiguity problem. When we run program with such type inheritance, it gives a compile

time error [Ambiguity]. If we see the structure of Multipath Inheritance then we find that there is shape

like Diamond.

int i

int j int i int k int i

int j int k int I int i(Duplicate Copies of int i)

[Ambiguity in Multipath Inheritance]

Why Ambiguity Problem in multipath (Virtual) Inheritance?

Suppose GRANDPARENT has a data member int i. PARENT1 has a data member int j. Another

PARENT2 has a data member int k. CHILD class which is inherited from PARENT1 and PARENT2.

CHILD class have data member:

int j (one copy of data member PARENT1)

int k (one copy of data member PARENT2)

int i(two copy of data member GRANDPARENT)

GRAND PARENT

CHILD

PARENT1

PARENT 2

,by - Topperworld

60 C++

This is ambiguity problem. In CHILD class have two copies of Base class. There are two duplicate copies

of int i of base class. One copy through PARENT1 and another copy from PARENT2.

This problem is also called as DIAMOND Problem.

 Demonstration of ambiguities in multipath inheritance.

Solution:

// This program contains an error and will not compile.

#include <iostream.h>

class base

{

public:

int i;

};

class derived1 : public base

{

public:

int j;

};

class derived2 : public base

{

public:

int k;

};

class derived3 : public derived1, public derived2

{

public:

int sum;

};

void main()

{

derived3 ob;

ob.i = 10; // this is ambiguous, which i???

ob.j = 20;

ob.k = 30;

ob.sum = ob.i + ob.j + ob.k; // i ambiguous here, too

cout << ob.i << " "; // also ambiguous, which i?

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

}

Program 4.7

,by - Topperworld

61 C++

As the comments in the program indicate, both derived1 and derived2 inherit base. However, derived3

inherits both derived1 and derived2. This means that there are two copies of base present in an object

of type derived3. Therefore, in an expression like

ob.i = 10; which i is being referred to, the one in derived1 or the one in derived2? Because there are two

copies of base present in object ob, there are two ob.is! As we can see, the statement is inherently

ambiguous.

There are two ways to remedy the preceding program. The first is to apply the scope resolution

operator to i and manually select one i. The second is to use virtual base class.

Remove Ambiguities using scope resolution operator:
In Program 4.7, the ambiguous statements

ob.i = 10;

ob.sum = ob.i + ob.j + ob.k;

cout << ob.i << " "; will be replaced by

ob.derived1::i = 10;

ob.sum = ob. derived1::i + ob.j + ob.k;

cout << ob. derived1::i << " "; respectively

As we can see, because the :: was applied, the program has manually selected derived1's version of

base. However, this solution raises a deeper issue: What if only one copy of base is actually required? Is

there some way to prevent two copies from being included in derived3? The answer, as you probably

have guessed, is yes. This solution is achieved using virtual base classes.

Remove Ambiguities using virtual base class:

When two or more objects are derived from a common base class, we can prevent multiple copies of

the base class from being present in an object derived from those objects by declaring the base class as

virtual when it is inherited. We accomplish this by preceding the base class' name with the keyword

virtual when it is inherited. For example, here is another version of the example program in which

derived3 contains only one copy of base:

 Remove Ambiguities using virtual base class.

Solution:

#include <iostream.h>

class base

 {

public:

int i;

};

class derived1 : virtual public base

{

Program 4.8

,by - Topperworld

62 C++

public:

int j;

};

class derived2 : virtual public base

{

public:

int k;

};

class derived3 : public derived1, public derived2

{

public:

int sum;

};

void main()

{

derived3 ob;

ob.i = 10; // now unambiguous

ob.j = 20;

ob.k = 30;

ob.sum = ob.i + ob.j + ob.k; // unambiguous

cout << ob.i << " "; // unambiguous

cout << ob.j << " " << ob.k << " ";

cout << ob.sum;

}

As we can see, the keyword virtual precedes the rest of the inherited class specification. Now that both

derived1 and derived2 have inherited base as virtual, any multiple inheritance involving them will cause

only one copy of base to be present. Therefore, in derived3, there is only one copy of base and ob.i = 10

is perfectly valid and unambiguous.

,by - Topperworld

63 C++

Short Type Questions

1. Define Inheritance.

2. Write any two advantages of inheritance.

3. List various types of inheritances.

4. Define virtual base class.

5. How do the properties of the following two derived classes differ?

class X: private Y { //….};

class A: proctected B { //….};

6. Private attributes can’t be inherited. State a remedy for this problem so that attributes of a

class behave like private attributes but can be inherited. Explain with an example.

Long Type Questions

1. Describe various types of Inheritance with suitable example.

2. How to restore the access label of an inheritance data member in derived class? Explain with

the help of a program in C++.

3. Give the definition of a virtual base class in C++ syntax.Explain why virtual base classes are

required?

4. Explain why object-oriented programs are more maintainable and reusable compared to

function-oriented programs.

5. Define ambiguity in inheritance. How ambiguities can be removed by using scope resolution

operator and virtual base class. Explain your answer with example.

6. With an appropriate example, explain how ambiguities can be resolved for public and protected

attributes in case of multi path inheritance without using virtual base class.

Assignment 3

,by - Topperworld

64 C++

Chapter 4

Polymorphism and Virtual Functions

Polymorphism means one name, multiple forms.

For example, the + (plus) operator in C++ will behave different for different data types:

4 + 5 <-- integer addition

3.14 + 2.0 <-- floating point addition

“Good” + "Boy” <-- string concatenation

Polymorphism is of two types:

(i) Compile time(Static) polymorphism (static binding or static linking or early binding)

� In compile time polymorphism, all information needed to call a function is known

during program compilation.

� Example: Function overloading and operator overloading are used to achieve

compile time polymorphism

(ii) Runtime(Dynamic) polymorphism(late binding or dynamic binding)

� In runtime polymorphism all information needed to call a function is known during

program execution.

� Example: Virtual function is used to achieve runtime polymorphism.

Function Overloading

It is the process by which a single function can perform different task, depending upon no of

parameters and types of parameters.

 Write a program to overload function area () to calculate area of circle and

area of a rectangle.

Solution:

#include <iostream.h>

float area(int);

int area(int, int);

void main()

{

 int r, l, b;

 cout << “Enter the Value of r, l & b: ”;

 cin>>r>>l>>b;

 cout<< “Area of circle is ”<<area(r)<<endl;

cout<< “Area of rectangle is ”<<area(l,b);

}

float area(int a)

Program 4.1

,by - Topperworld

65 C++

{

 return (3.14*a*a);

}

int area(int a, int b)

{

 return (a*b);

}

Output:

Enter the Value of r, l & b:

7 8 6

Area of circle is 153.86

Area of circle is 48

Ambiguity in Function Overloading

Suppose we have two functions:

void area(int,int);

void area(float,int);

void main()

{

 area(10,10); // Unambiguous function call, calls area(int, int){ }

 area(10.0,10); // Ambiguous function call, error!

}

Note: Here, the second area() function will not compile and will generate error ambiguity between

area(int,int) and area(float, int) . It's because 10.0 is treated as a double, not a float. Either of our

functions could accept a double, but our compiler doesn't know which one you want to use.

Following functions cannot be overloaded:

� void f(int x);

void f(int &x);

Above two functions cannot be overloaded when the only difference is that one takes a

reference parameter and the other takes a normal, call-by-value parameter.

� typedef int integer;

enum days{mon,tue,wed}

void f(int);

void f(mon);

Object Slicing

In object-oriented programming, a derived class typically inherits its base class by defining additional

member variables. If a base class instance is assigned its value from a derived class instance, member

variables defined in the derived class cannot be copied, since the base class has no place to store them.

This is a natural and unavoidable consequence of assignment by value from derived class objects. The

,by - Topperworld

66 C++

term object slicing is sometimes used to refer to this aspect of assignment by value to a base class

instance.

Object Slicing occurs when object of a derived class is assigned to an object of a base class, thereby

losing part of the information - some of it is “sliced" away.

Example:

class A

{

 int x;

};

class B : public A

{

 int y;

};

So an object of type B has two data members, x and y Then if we are writing this code:

B b;

A a = b;

Then the information in b about member y will be lost in a.

Function Overriding using Virtual Function

When a base class and derived class contain same member function, then the base version of the

member function always works when we invoke that function using base pointer.

 Demonstration of function overriding.

Solution:

#include<iostream.h>

class B

{

public:

void show()

{

cout<<"I am in base show"<<endl;

}

};

class D:public B

{

public:

void show()

{

cout<<"I am in derived show"<<endl;

Program 4.2

,by - Topperworld

67 C++

}

};

void main()

{

B b, *bp;

D d;

bp=&b;

bp->show();

bp=&d;

bp->show();

}

Output:

I am in base show

I am in base show

Note: Here the base version of function show () will work as it overrides the derived version of show ().

A virtual function is a member function that is declared within a base class and redefined by a derived

class. To create a virtual function, precede the function's declaration in the base class with the keyword

virtual. When a class containing a virtual function is inherited, the derived class redefines the virtual

function to fit its own needs. In essence, virtual functions implement the "one interface, multiple

methods" philosophy that underlies polymorphism. The virtual function within the base class defines the

form of the interface to that function. Each redefinition of the virtual function by a derived class

implements its operation as it relates specifically to the derived class. That is, the redefinition creates a

specific method.

 Write a program to demonstrate virtual function.

Solution:

#include<iostream.h>

class B

{

public:

virtual void show()

{

cout<<"I am in base show"<<endl;

}

};

class D:public B

{

public:

Program 4.3

,by - Topperworld

68 C++

void show()

{

cout<<"I am in derived show"<<endl;

}

};

void main()

{

B b, *bp;

D d;

bp=&b;

bp->show();

bp=&d;

bp->show();

}

Output:

I am in base show

I am in derived show

Important Tips!

A base pointer can be made to point to any number of derived objects, it cannot access the members

defined by a derived class. It can access only the members which are common to the base class. If a

same function is present in both base and derived class, always base version of the function is called

when we access the function using base pointer (no matters whether it points to base class or derived

class). Derived version of the function can be called by making the function (having same name) as

virtual. This is also called function overriding because function in the base class is overridden by the

function in the derived class.

Remember!

When a virtual function is inherited, its virtual nature is also inherited. This means that when a derived

class that has inherited a virtual function is itself used as a base class for another derived class, the

virtual function can still be overridden.

Pure virtual function

A pure virtual function is a virtual function that has no definition within the base class. To declare a pure

virtual function, use this general form:

virtual return-type function-name (parameter-list) = 0;

,by - Topperworld

69 C++

When a virtual function is made pure, any derived class must provide its own definition. If the derived

class fails to override the pure virtual function, a compile-time error will result. Hence definition for pure

virtual function must be there in the derived class.

Abstract Classes

A class that contains at least one pure virtual function is said to be abstract. Because an abstract class

contains one or more functions for which there is no definition (that is, a pure virtual function), no

objects of an abstract class may be created.

Instead, an abstract class constitutes an incomplete type that is used as a foundation for derived

classes. Although we cannot create objects of an abstract class, we can create pointers and references

to an abstract class. This allows abstract classes to support run-time polymorphism, which relies upon

base-class pointers and references to select the proper virtual function.

 Create an abstract class called Shape which contains a pure virtual function called

find_vol() and a protected attribute named as volume. Create two new derived classes from the

above class named as Cube and Sphere having double type attribute named as side and radius

respectively. Implement dynamic polymorphism to find out volume of a cube and a sphere. Also

display the result. [BPUT 2010]

Solution:

#include<iostream.h>

class Shape

{

protected:

double volume;

public:

virtual void find_vol()=0;

};

class Cube: public Shape

{

protected:

double side;

public:

Cube();

void find_vol();

};

class Sphere: public Shape

{

protected:

double radius;

public:

Program 4.4

,by - Topperworld

70 C++

Sphere();

void find_vol();

};

Cube::Cube()

{

cout<<”Enter side of the Cube:”<<endl;

cin>>side;

}

Sphere::Sphere ()

{

cout<<”Enter radius of the sphere:”<<endl;

cin>>radius;

}

void Cube:: find_vol()

{

volume=side*side*side;

cout<<”Volume of Cube is: ”<<volume<<endl;

}

void Sphere:: find_vol()

{

volume=(4/3)*3.14*radius*radius*radius;

cout<<”Volume of sphere is: ”<<volume;

}

void main()

{

Shape *ptr;

Cube cube;

Sphere sphere;

ptr=&cube;

ptr->find_vol();

ptr=&sphere;

ptr->find_vol();

}

Output:

Enter side of the Cube:

3

Enter radius of the sphere:

4

,by - Topperworld

71 C++

Volume of Cube is: 27

Volume of sphere is: 200.96

,by - Topperworld

72 C++

Short Type Questions

1. Why class is called an ADT?

2. Define function overriding and function overloading.

3. Define early binding and late binding.

4. Give two example of static polymorphism.

5. What is run time polymorphism?

6. Define pure virtual function.

7. Define ambiguity in function overloading.

8. How run time polymorphism can be achieved?

9. How compile time polymorphism can be achieved?

Long Type Questions

1. Explain virtual function with a suitable example.

2. Explain function overloading with an example. Also explain ambiguity problem in function

overloading.

3. Discuss object slicing with a suitable example.

4. “Pure virtual functions force the programmer to redefine virtual function inside derived class”.

Comment on this statement.

5. An abstract class cannot have instances. What then is the use of having abstract classes?

Explain your answer using a suitable example.

6. Distinguish between virtual member function and non-virtual member function.

7. Explain function overloading and function overriding with suitable examples.

8. Create a class called Volume which contains a method called find_vol (). Write down

appropriate code to create objects named as sphere and cylinder of the above class and

implement function overloading to calculate volume of a sphere and cylinder based upon user

input.

Assignment 4

,by - Topperworld

73 C++

Chapter 5

Operator Overloading

� It is most striking feature of C++.

� In operator overloading an operator can be operated on user defined data types. i.e. + operator

perform addition of integers or real numbers. But we can overload this operator to compute

sum of two complex number.

� Only existing operators can be overloaded. New operators cannot be overloaded (i.e. $ cannot

be overloaded as it is not an operator.)

� It should obey the basic meaning of an operator i.e. + operator cannot be used to subtract two

numbers.

� These operators cannot be overloaded:

The operator overloading can be done by using:

(i) Member function

(ii) Friend function

this Pointer

Every object in C++ has access to its own address through an important pointer called this pointer. The

this pointer is an implicit parameter to all member functions. Therefore, inside a member function, this

may be used to refer to the invoking object.

Friend functions do not have a this pointer, because friends are not members of a class. Only non static

member functions have a this pointer.

 Write a program to demonstrate this pointer.

Solution:

#include <iostream.h>

class Box

{

private:

 double length;

 double breadth;

 double height;

 public:

 Box(double l=2.0, double b=2.0, double h=2.0)

 {

cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 }

Program 5.1

,by - Topperworld

74 C++

 double Volume()

 {

 return (length * breadth * height);

 }

 int compare(Box box)

 {

 return (this->Volume() > box.Volume());

 }

};

void main(void)

{

 Box Box1(3.3, 1.2, 1.5);

 Box Box2(8.5, 6.0, 2.0);

 if(Box1.compare(Box2))

 {

 cout << "Box2 is smaller than Box1" <<endl;

 }

 else

 {

 cout << "Box2 is equal to or larger than Box1" <<endl;

 }

 }

Output:

Constructor called.

Constructor called.

Box2 is equal to or larger than Box1

Overloading Operators

A member operator function takes this general form:

return_type operator symbol(arg-list)

{

// operations

}

Often, operator functions return an object of the class they operate on, but return_type can be any

valid type(int, char, float, void etc). When you create an operator function, substitute the operator for

the symbol. For example, if you are overloading the / operator, use operator/. When you are

overloading a unary operator, arg-list will be empty. When you are overloading binary operators, arg-

list will contain one parameter.

,by - Topperworld

75 C++

Operator Overloading Restrictions:

There are some restrictions that apply to operator overloading.

� We cannot alter the precedence of an operator.

� We cannot change the number of operands that an operator takes.

� Except for the function call, operator, operator functions cannot have default arguments.

� Finally, these operators cannot be overloaded: scope resolution operator (::), conditional

operator (:?), dot operator (.) and asterisk operator (*).

� Except for the = operator, operator functions are inherited by any derived class.

� However, a derived class is free to overload any operator (including those overloaded by the

base class) it chooses relative to itself.

 Write a program to overload unary operator ++ using member function.

Solution:

#include<iostream.h>

class A

{

int n;

public:

void getdata();

void operator ++();

void display();

};

void A::getdata()

{

cout<<”Enter a number”;

cin>>n;

}

void A::operator ++()

{

n=n+1;

}

void A::display()

{

cout<<n;

}

void main()

{

A a;

a.getdata();

a++;

a.display();

Program 5.2

,by - Topperworld

76 C++

}

Output:

Enter a number

5

6

 Write a program to overload unary operator ++ using friend function.

Solution:

#include<iostream.h>

class A

{

int n;

public:

void getdata();

friend void operator ++(A &);

void display();

};

void A::getdata()

{

cout<<”Enter a number”;

cin>>n;

}

void operator ++(A x)

{

x.n=x.n+1;

}

void A::display()

{

cout<<n;

}

void main()

{

A a;

a.getdata();

a++;

a.display();

}

Output:

Enter a number

Program 5.3

,by - Topperworld

77 C++

5

6

 Write a program to overload binary operator + to find sum of two complex

numbers using member function.

 Solution:

#include<iostream.h>

class Complex

{

float real, img;

public:

Complex(float, float);

Complex operator + (Complex);

void display();

};

Complex::Complex(float x, float y)

{

real=x;

img=y

}

Complex Complex::operator +(Comlex c)

{

Complex temp;

temp.real=real+c.real;

temp.img=img+c.img;

return(temp);

}

void A::display()

{

cout<<real<<” +j”<<img<<”\n”;

}

void main()

{

Complex c1(2.5, 3.4), c2(4.2, 6.5), c3;

c3=c1+c2;

c1.display();

c2.display();

c3.display();

}

Program 5.4

,by - Topperworld

78 C++

Output:

2.5+ j3.4

4.2+ j6.5

6.7+ j9.9

Note: As you can see, operator+ () has only one parameter even though it overloads the binary +

operator. (You might expect two parameters corresponding to the two operands of a binary operator.)

The reason that operator+ () takes only one parameter is that the operand on the left side of the + is

passed implicitly to the function through the this pointer. The operand on the right is passed in the

parameter c. The fact that the left operand is passed using this also implies one important point: When

binary operators are overloaded, it is the object on the left that generates the call to the operator

function.

The statement c3=c1+c2; is same as c1.operator+(c2).

 Write a program to overload binary operator + to find sum of two complex

numbers using friend function.

Solution:

#include<iostream.h>

class Complex

{

float real, img;

public:

Complex(float, float);

friend Complex operator + (Complex, Complex);

void display();

};

Complex::Complex(float x, float y)

{

real=x;

img=y

}

Complex operator+(Comlex a, Complex b)

{

Complex temp;

temp.x=a.real+b.real;

temp.y=a.img+b.img;

return(temp);

}

void A::display()

Program 5.5

,by - Topperworld

79 C++

{

cout<<real<<” +j”<<img<<”\n”;

}

void main()

{

Complex c1(2.5, 3.4), c2(4.2, 6.5), c3;

c3=c1+c2;

c1.display();

c2.display();

c3.display();

}

Output:

2.5+ j3.4

4.2+ j6.5

6.7+ j9.9

 Suppose there is a class called X with two double type attributes. Write a C++

program to create two objects named ob 1 and ob 2 of the above class and overload the binary ==

operator to perform the following operation within main():

if(ob 1== ob 2)

cout<<”Objects are same”<<endl;

else

cout<<”Objects are different”<<endl; [BPUT 2010]

Solution:

#include<iostream.h>

class X

{

double d1, d2;

public:

X(double, double);

int operator==(X);

void display();

};

X::X(double x, double y)

{

d1=x;

d2=y;

}

int X:: operator==(X p)

Program 5.5

,by - Topperworld

80 C++

{

if(d1==p.d1 &&d2==p.d2)

return 1;

else

return 0;

}

void main()

{

X ob1(2.5, 3.4), ob2(2.5, 3.0);

if(ob 1== ob 2)

cout<<”Objects are same”<<endl;

else

cout<<”Objects are different”<<endl;

}

,by - Topperworld

81 C++

Short Type Questions

1. What is operator overloading?

2. Which operators cannot be overloaded in C++ and why?

Long Type Questions

1. Create a class complex with real and imaginary parts as member variables, member function

get () and disp () to input and display a complex number respectively. Write a program using the

above class to overload + and – operators to perform addition and subtraction of two complex

numbers.

2. Write a program in C++ to overload subscript [] operator.

3. Define a class called Increment; the class contains one integer data member. Overload the

object of the class for both pre-increment and post-increment operator.

4. Write a program to compare two strings by overloading == operator.

5. Write a program to add two string using + operator overloading.

6. Write a program to overload new and delete operator.

7. Write an appropriate C++ code showing ambiguity resolving mechanism where a class attribute

has same name as that of a local parameter of a member by using this pointer.

8. Write a program to overload == operator to check whether two circles are equal or not. (Two

circles are said to be equal if their radius is same and center has same coordinate)

9. Write a program to overload new and delete operator in C++.

10. Write a program to overload == operator to check whether two strings are equal or not.

Assignment 5

,by - Topperworld

82 C++

Chapter 6

Exception Handling

Two common types of error in a program are:

1) Syntax error (arises due to missing semicolon, comma, and wrong prog. constructs etc)

2) Logical error (wrong understanding of the problem or wrong procedure to get the solution)

Exceptions

Exceptions are the errors occurred during a program execution. Exceptions are of two types:

� Synchronous (generated by software i.e. division by 0, array bound etc).

� Asynchronous (generated by hardware i.e. out of memory, keyboard etc).

Exception handling mechanism

� C++ exception handling mechanism is basically built upon three keywords namely, try, throw

and catch.

� Try block hold a block of statements which may generate an exception.

� When an exception is detected, it is thrown using a throw statement in the try block.

Try block

Detects and throws

exception

Catch block

Catches and handles the

exception

� A try block can be followed by any number of catch blocks.

The general form of try and catch block is as follows:

try

{

/* try block; throw exception*/

}

catch (type1 arg)

{

/* catch block*/

}

…………………….

,by - Topperworld

83 C++

…………………….

catch (type2 arg)

{

/* catch block*/

}

The exception handling mechanism is made up of the following elements:

• try blocks

• catch blocks

• throw expressions

 Write a program to find x/y, where x and y are given from the keyboard and

both are integers.

Solution:

#include<iostream.h>

void main()

{

int x, y;

cout<<”enter two number”<<endl;

cin>>x>>y;

try

{

if(y!=0)

{

z=x/y;

cout<<endl<<z;

}

else

{

throw(y);
}

}

catch(int y)

{

cout<<”exception occurred: y=”<<y<<endl;

}

}

Output:

Enter two number

6 0

exception occurred:y=0

Program 7.1

,by - Topperworld

84 C++

A try block can be localized to a function. When this is the case, each time the function is entered, the

exception handling relative to that function is reset. For example, examine this program.

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test) throw test;

}

catch(int i)

{

cout << "Caught Exception #: " << i << '\n';

}

}

void main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught Exception #: 3

End

As you can see, three exceptions are thrown. After each exception, the function returns. When the

function is called again, the exception handling is reset.

It is important to understand that the code associated with a catch statement will be executed only if it

catches an exception. Otherwise, execution simply bypasses the catch altogether. (That is, execution

never flows into a catch statement.) For example, in the following program, no exception is thrown, so

the catch statement does not execute.

#include <iostream.h>

void main()

Program 7.2

,by - Topperworld

85 C++

{

cout << "Start\n";

try

{

cout << "Inside try block\n";

cout << "Still inside try block\n";

}

catch (int i)

 {

cout << "Caught an exception -- value is: ";

cout << i << "\n";

}

 cout << "End";

}

Output:

Start

Inside try block

Still inside try block

End

Catching Class Types

An exception can be of any type, including class types that you create. Actually, in real-world programs,

most exceptions will be class types rather than built-in types. Perhaps the most common reason that

you will want to define a class type for an exception is to create an object that describes the error that

occurred. This information can be used by the exception handler to help it process the error. The

following example demonstrates this.

#include <iostream.h>

#include <cstring.h>

class MyException

{

public:

char str_what[80];

int what;

MyException() { *str_what = 0; what = 0; }

MyException(char *s, int e)

{

strcpy(str_what, s);

what = e;

Program 7.3

,by - Topperworld

86 C++

}

};

void main()

{

int i;

try {

cout << "Enter a positive number: ";

cin >> i;

if(i<0)

throw MyException("Not Positive", i);

}

catch (MyException e) { // catch an error

cout << e.str_what << ": ";

cout << e.what << "\n";

}

}

Output:

Enter a positive number: -4

Not Positive: -4

The program prompts the user for a positive number. If a negative number is entered, an object of the

class MyException is created that describes the error. Thus, MyException encapsulates information

about the error. This information is then used by the exception handler. In general, you will want to

create exception classes that will encapsulate information about an error to enable the exception

handler to respond effectively.

Using Multiple catch Statements

As stated, you can have more than one catch associated with a try. In fact, it is common to do so.

However, each catch must catch a different type of exception. For example, this program catches both

integers and strings.

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test) throw test;

else throw "Value is zero";

}

catch(int i)

{

Program 7.4

,by - Topperworld

87 C++

cout << "Caught Exception #: " << i << '\n';

}

catch(const char *str) {

cout << "Caught a string: ";

cout << str << '\n';

}

}

void main()

{

cout << "Start\n";

Xhandler(1);

Xhandler(2);

Xhandler(0);

Xhandler(3);

cout << "End";

}

Output:

Start

Caught Exception #: 1

Caught Exception #: 2

Caught a string: Value is zero

Caught Exception #: 3

End

As you can see, each catch statement responds only to its own type.

Handling Derived-Class Exceptions

You need to be careful how you order your catch statements when trying to catch exception types that

involve base and derived classes because a catch clause for a base class will also match any class

derived from that base. Thus, if you want to catch exceptions of both a base class type and a derived

class type, put the derived class first in the catch sequence. If you don't do this, the base class catch will

also catch all derived classes. For example, consider the following program.

#include <iostream.h>

class B

{

};

class D: public B

{

};

Program 7.5

,by - Topperworld

88 C++

void main()

{

D derived;

try

{

throw derived;

}

catch(B b)

{

cout << "Caught a base class.\n";

}

catch(D d)

{

cout << "This won't execute.\n";

}

}

Here, because derived is an object that has B as a base class, it will be caught by the first catch clause

and the second clause will never execute. Some compilers will flag this condition with a warning

message. Others may issue an error. Either way, to fix this condition, reverse the order of the catch

clauses.

Exception Handling Options

There are several additional features and nuances to C++ exception handling that make it easier and

more convenient to use. These attributes are discussed here.

Catching All Exceptions

In some circumstances you will want an exception handler to catch all exceptions instead of just a

certain type. This is easy to accomplish. Simply use this form of catch.

catch (...) {

// process all exceptions

}

Here, the ellipsis matches any type of data. The following program illustrates catch (...).

#include <iostream.h>

void Xhandler(int test)

{

try

{

if(test==0) throw test; // throw int

if(test==1) throw 'a'; // throw char

if(test==2) throw 123.23; // throw double

Program 7.6

,by - Topperworld

89 C++

}

catch(...)

{

cout << "Caught One!\n";

}

}

void main()

{

cout << "Start\n";

Xhandler(0);

Xhandler(1);

Xhandler(2);

cout << "End";

}

Output:

Start

Caught One!

Caught One!

Caught One!

End

Rethrowing an Exception

If you wish to rethrow an expression from within an exception handler, you may do so by calling throw,
by itself, with no exception. This causes the current exception to be passed on to an outer try/catch

sequence. The most likely reason for doing so is to allow multiple handlers access to the exception. For

example, perhaps one exception handler manages one aspect of an exception and a second handler

copes with another. An exception can only be rethrown from within a catch block (or from any function

called from within that block). When you rethrow an exception, it will not be recaught by the same

catch statement. It will propagate outward to the next catch statement. The following program

illustrates rethrowing an exception, in this case a char * exception.

#include <iostream.h>

void Xhandler()

{

try

{

throw "hello"; // throw a char *

}

catch(const char *)

{

cout << "Caught char * inside Xhandler\n";

throw ; // rethrow char * out of function

Program 7.7

,by - Topperworld

90 C++

}

}

void main()

{

cout << "Start\n";

try

{

Xhandler();

}

catch(const char *)
{

cout << "Caught char * inside main\n";

}

cout << "End";

}

Output:
Start

Caught char * inside Xhandler

Caught char * inside main

end

Understanding terminate() and unexpected()

As mentioned earlier, terminate() and unexpected() are called when something goes wrong during the

exception handling process. These functions are supplied by the Standard C++ library. Their prototypes

are shown here:

void terminate();

void unexpected();

These functions require the header <exception>.

The terminate() function is called whenever the exception handling subsystem fails to find a matching

catch statement for an exception. It is also called if your program attempts to rethrow an exception

when no exception was originally thrown. The terminate() function is also called under various other,

more obscure circumstances. For example, such a circumstance could occur when, in the process of

unwinding the stack because of an exception, a destructor for an object being destroyed throws an

exception. In general, terminate() is the handler of last resort when no other handlers for an exception

are available. By default, terminate() calls abort() .

,by - Topperworld

91 C++

Short Type Question

1. What is exception?

2. Differentiate between syntax error and logical error.

Long Type Questions

1. What is an exception? Describe the mechanism of exception handling with suitable example?

2. What is a generic catch block? What are the restrictions while using a generic catch block?

Explain with an example.

Assignment 6

,by - Topperworld

92 C++

Chapter 7

Dynamic Memory Management

There are two ways to allocate memory:

(i) Static memory allocation

(ii) Dynamic memory allocation

(i) Static memory allocation

To allocate memory at the time of program compilation is known as static memory allocation.

i.e. int a[10];

it allocates 20 bytes at the time of compilation of the program. Its main disadvantage is wastage or

shortage of memory space can takes place.

(ii) Dynamic memory allocation

To allocate memory at the time of program execution is known as dynamic memory allocation.C++

provides two dynamic allocation operators: new and delete. These operators are used to allocate and

free memory at run time. Dynamic allocation is an important part of almost all real-world programs.

These are included for the sake of compatibility with C. However, for C++ code, you should use the new

and delete operators because they have several advantages. The new operator allocates memory and

returns a pointer to the start of it. The delete operator frees memory previously allocated using new.

The general forms of new and delete are shown here:

p_var = new type;

delete p_var;

Here, p_var is a pointer variable that receives a pointer to memory that is large enough to hold an item

of type type.

 Memory Allocation to an integer.

Solution:

#include <iostream.h>

void main()

{

int *p;

try

 {

p = new int;

}

catch (bad_alloc xa)

{

cout << "Allocation Failure\n";

Program 7.1

,by - Topperworld

93 C++

return 1;

}

*p = 100;

cout << "At " << p << " ";

cout << "is the value " << *p << "\n";

delete p;

}

This program assigns to p an address in the heap that is large enough to hold an integer. It then assigns

that memory the value 100 and displays the contents of the memory on the screen. Finally, it frees the

dynamically allocated memory. Remember, if your compiler implements new such that it returns null

on failure, you must change the preceding program appropriately.The delete operator must be used

only with a valid pointer previously allocated by using new. Using any other type of pointer with delete

is undefined and will almost certainly cause serious problems, such as a system crash.

Comparison between new, delete and malloc(), free

Although new and delete perform functions similar to malloc() and free(), they have several

advantages. First, new automatically allocates enough memory to hold an object of the specified type.

You do not need to use the sizeof operator. Because the size is computed automatically, it eliminates

any possibility for error in this regard. Second, new automatically returns a pointer of the specified

type. You don't need to use an explicit type cast as you do when allocating memory by using malloc().

Finally, both new and delete can be overloaded, allowing you to create customized allocation systems.

Although there is no formal rule that states this, it is best not to mix new and delete with malloc() and

free() in the same program. There is no guarantee that they are mutually compatible.

The Placement Forms of new and delete

There is a special form of new, called the placement form, that can be used to specify an alternative

method of allocating memory. It is primarily useful when overloading the new operator for special

circumstances. There is a default implementation of the placement new operator, which has this

general form:

p_var = new (location) type;

Here, location specifies an address that is simply returned by new. There is also a placement form of

delete, which is used to free memory allocated by the placement form of new.

Object Copying

An object copy is an action in computing where a data object has its attributes copied to another object

of the same data type. An object is a composite data type in object-oriented programming languages.

The copying of data is one of the most common procedures that occur in computer programs. An

object may be copied to reuse all or part of its data in a new context.

,by - Topperworld

94 C++

Methods of copying

The design goal of most objects is to give the semblance of being made out of one monolithic block

even though most are not. As objects are made up of several different parts, copying becomes

nontrivial. Several strategies exist to attack this problem.

Consider two objects, A and B, which each refer to two memory blocks xi and yi (i = 1, 2,...). Think of A

and B as strings and of xi and yi (i = 1, 2,...) as the characters they contain. There are different strategies

for copying A into B.

Shallow copy

One method of copying an object is the shallow copy. In the process of shallow copying A, B will copy

all of A's field values. If the field value is a memory address it copies the memory address, and if the

field value is a primitive type it copies the value of the primitive type.

The disadvantage is if you modify the memory address that one of B's fields point to, you are also

modifying what A's fields point to.

Deep copy

A deep copy in progress. A deep copy having been

completed.

An alternative is a deep copy. Here the data is actually copied over. The result is different from the

result a shallow copy gives. The advantage is that A and B do not depend on each other but at the cost

of a slower and more expensive copy.

,by - Topperworld

95 C++

Lazy copy

A lazy copy is a combination of both strategies above. When initially copying an object, a (fast) shallow

copy is used. A counter is also used to track how many objects share the data. When the program wants

to modify an object, it can determine if the data is shared (by examining the counter) and can do a deep

copy if necessary.

Lazy copy looks to the outside just as a deep copy but takes advantage of the speed of a shallow copy

whenever possible. The downsides are rather high but constant base costs because of the counter.

Also, in certain situations, circular references can cause problems. Lazy copy is related to copy-on-

write.

Copy Constructor

When one object is used to initialize another, C++ performs a bitwise copy. That is, an identical copy of

the initializing object is created in the target object. Although this is perfectly adequate for many

cases—and generally exactly what you want to happen—there are situations in which a bitwise copy

should not be used. One of the most common is when an object allocates memory when it is created.

For example, assume a class called MyClass that allocates memory for each object when it is created,

and an object A of that class. This means that A has already allocated its memory. Further, assume that

A is used to initialize B, as shown here:

 MyClass B= A;

 If a bitwise copy is performed, then B will be an exact copy of A. This means that B will be using the

same piece of allocated memory that A is using, instead of allocating its own. Clearly, this is not the

desired outcome. For example, if MyClass includes a destructor that frees the memory, then the same

piece of memory will be freed twice when A and B are destroyed!

The same type of problem can occur in two additional ways: first, when a copy of an object is made

when it is passed as an argument to a function; second, when a temporary object is created as a return

value from a function. Remember, temporary objects are automatically created to hold the return value

of a function and they may also be created in certain other circumstances .To solve the type of problem

just described, C++ allows you to create a copy constructor, which the compiler uses when one object

initializes another. When a copy constructor exists, the default, bitwise copy is bypassed. The most

common general form of a copy constructor is

classname (const classname &o)

 {

// body of constructor

}

Here, o is a reference to the object on the right side of the initialization. It is permissible for a copy

constructor to have additional parameters as long as they have default arguments defined for them.

However, in all cases the first parameter must be a reference to the object doing the initializing.

,by - Topperworld

96 C++

It is important to understand that C++ defines two distinct types of situations in which the value of one

object is given to another. The first is assignment. The second is initialization, which can occur any of

three ways:

� When one object explicitly initializes another, such as in a declaration

� When a copy of an object is made to be passed to a function

� When a temporary object is generated (most commonly, as a return value)

The copy constructor applies only to initializations. For example, assuming a class

called myclass, and that y is an object of type myclass, each of the following statements

involves initialization.

myclass x = y; // y explicitly initializing x

func(y); // y passed as a parameter

y = func(); // y receiving a temporary, return object.

Virtual destructor

In C++ a destructor is generally used to deallocate memory and do some other cleanup for a class object

and it’s class members whenever an object is destroyed. Destructors are distinguished by the tilde, the

‘~’ that appears in front of the destructor name. In order to define a virtual destructor, all you have to do

is simply add the keyword “virtual” before the tilde symbol.

The need for virtual destructors in C++ is best illustrated by some examples. Let’s start by going

through an example that does not use virtual destructors, and then we will go through an example that

does use virtual destructors. Once you see the difference, you will understand why virtual destructors

are needed. Take a look at the code below to start out:

 Example without a Virtual Destructor:

#include iostream.h

class Base

{

 public:

 Base(){ cout<<"Constructing Base";}

 ~Base(){ cout<<"Destroying Base";}

};

class Derive: public Base

{

 public:

 Derive(){ cout<<"Constructing Derive";}

 ~Derive(){ cout<<"Destroying Derive";}

 };

void main()

Program 7.2

,by - Topperworld

97 C++

{

 Base *basePtr = new Derive();

 delete basePtr;

}

Output:

Constructing Base

Constructing Derive

Destroying Base

Note: Based on the output above, we can see that the constructors get called in the appropriate order

when we create the Derive class object pointer in the main function. But there is a major problem with

the code above: the destructor for the "Derive" class does not get called at all when we delete ‘basePtr’.

So, how can we fix this problem?

Well, what we can do is make the base class destructor virtual, and that will ensure that the destructor

for any class that derives from Base (in our case, its the "Derive" class) will be called.

 Example with a Virtual Destructor:

So, the only thing we will need to change is the destructor in the Base class and here’s what it will look

like – note that we highlighted the part of the code where the virtual keyword has been added in bold:

class Base

{

 public:

 Base()

{

cout<<"Constructing Base";

}

 virtual ~Base()

{

cout<<"Destroying Base";

}

};

Output:

Constructing Base

Constructing Derive

Destroying Derive

Destroying Base

Note: Here the derived class destructor will be called before the base class. So, now you’ve seen why

we need virtual destructors and also how they work. One important design paradigm of class design is

that if a class has one or more virtual functions, then that class should also have a virtual destructor.

Program 7.3

,by - Topperworld

98 C++

Short Type Questions

1. Differentiate between new and malloc.

2. Differentiate between delete and free.

3. Define object copying.

4. What is virtual destructor?

5. Can constructor be made virtual?

6. Define Copy constructor.

Long Type Questions

1. Define dynamic memory management. Explain dynamic memory management in C++ with

suitable example.

2. Explain virtual destructor with an example.

Assignment 7

,by - Topperworld

99 C++

Chapter 8

Templates

� Using templates, it is possible to create generic functions and classes.

� In a generic function or class, the type of data upon which the function or class operates is

specified as a parameter.

� Thus, we can use one function or class with several different types of data without having to

explicitly recode specific versions for each data type.

Generic functions (Function Templates)

A generic function defines a general set of operations that will be applied to various types of data. The

type of data that the function will operate upon is passed to it as a parameter. Through a generic

function, a single general procedure can be applied to a wide range of data.

The general form of a template function definition is shown here:

template <class Ttype>

return-type func-name (Ttype a1, Ttype a2,……., Ttype n)

{

// body of function

}

Here, Ttype is a placeholder name for a data type used by the function.

 Write a generic function swap to interchange any two variables (integer,

character, and float).

#include <iostream.h>

template <class T>

void swap(T p, T q)

{

T temp;

temp = p;

p = q;

q = temp;

cout<<p<<”\t”<<q;

}

void main()

{

int i=10, j=20;

float x=10.1, y=23.3;

char a='x', b='z';

swap (i, j); /*swaps integers*/

swap (x, y); /* swaps floats*/

swap (a, b); /*swaps chars*/

}

Program 8.1

,by - Topperworld

100 C++

Output:

20 10

23.2 10.1

z x

Note: The line:

template <class T> void swap (T p, T q) tells the compiler two things: that a template is being created

and that a generic definition is beginning. Here, T is a generic type that is used as a placeholder. After

the template portion, the function swap () is declared, using T as the data type of the values that will be

swapped. In main () , the swap () function is called using three different types of data: ints, floats, and

chars. Because swap () is a generic function, the compiler automatically creates three versions of swap

(): one that will exchange integer values, one that will exchange floating-point values, and one that will

swap characters.

A Function with Two Generic Types:

We can define more than one generic data type in the template statement by using a comma-

separated list. For example; below program creates a template function that has two generic

types.

 A function with two generic types.

Solution:

#include <iostream.h>

template <class T1, class T2>

void myfunc (T1 x, T2 y)

{

cout << x << “\t” << y << “\n”;

}

void main()

{

myfunc (10, "I like C++");

myfunc (98.6, 19);

}

Output:

10 I like C++

98.6 19

Program 8.2

,by - Topperworld

101 C++

Generic Function Restrictions

Generic functions are similar to overloaded functions except that they are more restrictive. When

functions are overloaded, you may have different actions performed within the body of each function.

But a generic function must perform the same general action for all versions- only the type of data can

differ.

Overloading a Function Template

In addition to creating explicit, overloaded versions of a generic function, you can also overload the

template specification itself. To do so, simply create another version of the template that differs from

any others in its parameter list. For example:

 Demonstration of function template overloading.

Solution:

#include <iostream.h>

// First version of f() template.

template <class X> void f(X a)

{

cout << "Inside f(X a)\n";

}

// Second version of f() template.

template <class X, class Y> void f(X a, Y b)

{

cout << "Inside f(X a, Y b)\n";

}

int main()

{

f(10); // calls f(X)

f(10, 20); // calls f(X, Y)

return 0;

}

Here, the template for f() is overloaded to accept either one or two parameters

 Write a function template to sort an array of items.

Solution:

#include <iostream.h>

template <class T> void sort(X *a, int n)

{

Program 8.2

Program 8.3

,by - Topperworld

102 C++

int i,j;

T t;

for(i=1; i<n;i++)

for(j=n-1; j>=i; j--)

if(a[j-1] > a[j])

{

t = a[j-1];

a[j-1] = a[j];

a[j] = t;

}

}

void main()

{

int iarray[7] = {7, 5, 4, 3, 9, 8, 6};

double farray[5] = {2.6, -3.0, 1.2,9.6,8.9};

int i;

sort(iarray, 7);

sort(farray, 5);

cout << "Sorted INTEGER array is: ";

for(i=0; i<7; i++)

cout << iarray[i] << “\t”;

cout << "\nSorted CHARACTER array is: ";

for(i=0; i<5; i++)

cout << farray[i] << “\t”;

}

Output:

Sorted INTEGER array is: 3 4 5 6 7 8 9

Sorted CHARACTER array is:-3.0 1.2 2.6 8.9 9.6

Generic class (class templates)

In addition to generic functions, we can also define a generic class. When we do this, we create a class

that defines all the algorithms used by that class; however, the actual type of the data being

manipulated will be specified as a parameter when objects of that class are created.

Generic classes are useful when a class uses logic that can be generalized. For example, the same

algorithms that maintain a queue of integers will also work for a queue of characters, and the same

mechanism that maintains a linked list of mailing addresses will also maintain a linked list of auto part

information.

The general form of a generic class declaration is:

template <class T>

,by - Topperworld

103 C++

class class-name

{

};

General form of a member function definition of template class:

template <class T>

Ret_type class_name <T>:: function()

{

}

General form of object creation of a template class:

class_name <data_type> object1, object2,…….

 Write a program to add two numbers (either two integers or floats) using

class templates.

Solution:

#include <iostream.h>

template <class T>

class Add

{

T a, b;

public:

void getdata();

void display();

};

template <class T>

void Add <T>::getdata()

{

cout<<”Eneter 2 nos”;

cin>>a>>b;

}

template <class T>

void Add <T>::display()

{

Program 8.4

,by - Topperworld

104 C++

cout<<”sum=”<<a+b;

}

void main()

{

Add <int> ob1;

Add <float> ob2;

ob1.getdata();

ob1.display();

ob2.getdata();

ob2.display();

}

Output:

Eneter 2 nos 4 5

Sum=9

Eneter 2 nos 4.8 5.1

Sum=9.9

A class with Two Generic Data Types

A template class can have more than one generic data type. Simply declare all the data types required

by the class in a comma-separated list within the template specification.

 A class with two generic types.

Solution:

#include <iostream.h>

template <class Type1, class Type2>

class myclass

{

Type1 i;

Type2 j;

public:

myclass(Type1 a, Type2 b)

 {

 i = a; j = b;

 }

void show()

{

cout << i << ' ' << j << '\n';

}

};

Program 8.5

,by - Topperworld

105 C++

void main()

{

myclass<int, double> ob1(10, 0.23);

myclass<char, char *> ob2('X', "Templates add power.");

ob1.show(); // show int, double

ob2.show(); // show char, char *

}

The Power of Templates
Templates help you achieve one of the most elusive goals in programming: the creation of reusable

code. Through the use of template classes you can create frameworks that can be applied over and over

again to a variety of programming situations

Generic functions and classes provide a powerful tool that you can use to amplify your programming

efforts. Once you have written and debugged a template class, you have a solid software component

that you can use with confidence in a variety of different situations. You are saved from the tedium of

creating separate implementations for each data type with which you want the class to work. While it is

true that the template syntax can seem a bit intimidating at first, the rewards are well worth the time it

takes to become comfortable with it. Template functions and classes are already becoming

commonplace in programming, and this trend is expected to continue. For example, the STL (Standard

Template Library) defined by C++ is, as its name implies, built upon templates. One last point: although

templates add a layer of abstraction, they still ultimately compile down to the same, high-performance

object code that you have come to expect from C++.

,by - Topperworld

106 C++

Short Type Questions

1. Define template.

2. What are generic function and generic class?

3. Write the syntax to define a generic function.

4. Write the syntax to define a generic class.

Long Type Questions

1. “Templates are called parameterized classes or functions”. Comment on this line.

2. Write a program in C++ to overload a function template.

3. Write the template function alloc() that takes two parameters:

n: the size of the array to allocate.

Val: a value of type T.

The alloc() function should allocate an array of type T with n elements and set all elements in

the array i to value Val , a pointer to array is returned.

Assignment 8

,by - Topperworld

107 C++

Chapter 9

Standard Template Library

 The Standard Template Library (STL) is a C++ software library that influenced many parts of

the C++ Standard Library It provides four components called algorithms, containers, functional and

iterators. The STL provides a ready-made set of common classes for C++, such

as containers and associative arrays, that can be used with any built-in type and with any user-defined

type that supports some elementary operations (such as copying and assignment). STL algorithms are

independent of containers, which significantly reduces the complexity of the library.

The STL achieves its results through the use of templates. This approach provides compile-time

polymorphism that is often more efficient than traditional run-time polymorphism.

Modern C++ compilers are tuned to minimize any abstraction penalty arising from heavy use of the

STL.

At the core of the standard template library are three foundational items: containers, algorithms, and

iterators. These items work in conjunction with one another to provide off-the-shelf solutions to a

variety of programming problems.

Containers
Containers are objects that hold other objects, and there are several different types. For example, the

vector class defines a dynamic array, deque creates a double-ended queue, and list provides a linear

list. These containers are called sequence containers because in STL terminology, a sequence is a linear

list. In addition to the basic containers, the STL also defines associative containers, which allow efficient

retrieval of values based on keys. For example, a map provides access to values with unique keys. Thus,

a map stores a key/value pair and allows a value to be retrieved given its key. Each container class

defines a set of functions that may be applied to the container. For example, a list container includes

functions that insert, delete, and merge elements. A stack includes functions that push and pop values.

Algorithms

Algorithms act on containers. They provide the means by which you will manipulate the contents of

containers. Their capabilities include initialization, sorting, searching, and transforming the contents of

containers. Many algorithms operate on a range of elements within a container.

Iterators

Iterators are objects that are, more or less, pointers. They give you the ability to cycle through the

contents of a container in much the same way that you would use a pointer to cycle through an array.

There are five types of iterators:

Iterator Access Allowed

Random Access Store and retrieve values. Elements may be accessed randomly.

Bidirectional Store and retrieve values. Forward and backward moving.

Forward Store and retrieve values. Forward moving only.

,by - Topperworld

108 C++

Input Retrieve, but not store values. Forward moving only.

Output Store, but not retrieve values. Forward moving only.

In general, an iterator that has greater access capabilities can be used in place of one that has lesser

capabilities. For example, a forward iterator can be used in place of an input iterator. Iterators are

handled just like pointers. You can increment and decrement them.

You can apply the * operator to them. Iterators are declared using the iterator type defined by the

various containers.The STL also supports reverse iterators. Reverse iterators are either bidirectional or

random-access iterators that move through a sequence in the reverse direction. Thus, if a reverse

iterator points to the end of a sequence, incrementing that iterator will cause it to point to one element

before the end.

Other STL Elements

In addition to containers, algorithms, and iterators, the STL relies upon several other standard

components for support. Chief among these are allocators, predicates, comparison functions, and

function objects. Each container has defined for it an allocator. Allocators manage memory allocation

for a container. The default allocator is an object of class allocator, but you can define your own

allocators if needed by specialized applications. For most uses, the default allocator is sufficient.

Several of the algorithms and containers use a special type of function called a predicate. There are two

variations of predicates: unary and binary. A unary predicate takes one argument, while a binary

predicate has two.

Vectors

Perhaps the most general-purpose of the containers is vector. The vector class supports a dynamic

array. This is an array that can grow as needed. As you know, in C++ the size of an array is fixed at

compile time. While this is by far the most efficient way to implement arrays, it is also the most

restrictive because the size of the array cannot be adjusted at run time to accommodate changing

program conditions. A vector solves this problem by allocating memory as needed. Although a vector is

dynamic, you can still use the standard array subscript notation to access its elements.

The template specification for vector is shown here:

template <class T, class Allocator = allocator<T>> class vector

Here, T is the type of data being stored and Allocator specifies the allocator, which defaults to the

standard allocator. vector has the following constructors:

explicit vector(const Allocator &a = Allocator());

explicit vector(size_type num, const T &val = T (),

const Allocator &a = Allocator());

vector(const vector<T, Allocator> &ob);

template <class InIter> vector(InIter start, InIter end,

const Allocator &a = Allocator());

,by - Topperworld

109 C++

The first form constructs an empty vector. The second form constructs a vector that has num elements

with the value val. The value of val may be allowed to default. The third form constructs a vector that

contains the same elements as ob. The fourth form constructs a vector that contains the elements in

the range specified by the iterators start and end.

Any object that will be stored in a vector must define a default constructor. It must also define the <

and == operations. Some compilers may require that other comparison operators be defined. (Since

implementations vary, consult your compiler's documentation for precise information.) All of the built-

in types automatically satisfy these requirements.

Although the template syntax looks rather complex, there is nothing difficult about declaring a vector.

Here are some examples:

vector<int> iv; // create zero-length int vector

vector<char> cv(5); // create 5-element char vector

vector<char> cv(5, 'x'); // initialize a 5-element char vector

vector<int> iv2(iv); // create int vector from an int vector

The following comparison operators are defined for vector:

==, <, <=, !=, >, >=

The subscripting operator [] is also defined for vector. This allows you to access the elements of a

vector using standard array subscripting notation.

 Basic operation of a vector.

Solution:

#include <iostream>

#include <vector>

#include <cctype>

using namespace std;

void main ()

{

vector<char> v(10); // create a vector of length 10

int i;

// display original size of v

cout << "Size = " << v.size() << endl;

// assign the elements of the vector some values

for(i=0; i<10; i++) v[i] = i + 'a';

// display contents of vector

cout << "Current Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

cout << "Expanding vector\n";

/* put more values onto the end of the vector,

it will grow as needed */

for(i=0; i<10; i++) v.push_back(i + 10 + 'a');

Program 9.1

,by - Topperworld

110 C++

// display current size of v

cout << "Size now = " << v.size() << endl;

// display contents of vector

cout << "Current contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << "\n\n";

// change contents of vector

for(i=0; i<v.size(); i++) v[i] = toupper(v[i]);

cout << "Modified Contents:\n";

for(i=0; i<v.size(); i++) cout << v[i] << " ";

cout << endl;

}

Output:

Size = 10

Current Contents:

a b c d e f g h i j

Expanding vector

Size now = 20

Current contents:

a b c d e f g h i j k l m n o p q r s t

Modified Contents:

A B C D E F G H I J K L M N O P Q R S T

,by - Topperworld

111 C++

Short Type Questions

1. Differentiate between new and malloc.

2. Differentiate between delete and free.

Long Type Questions

3. Define dynamic memory management. Explain dynamic memory management in C++ with

suitable example.

Assignment 9

,by - Topperworld

112 C++

Chapter 10

Namespace

The namespace keyword allows you to partition the global namespace by creating a declarative region.

In essence, a namespace defines a scope. The general form of namespace is shown here:

namespace name

{

// declarations

}

Anything defined within a namespace statement is within the scope of that namespace.

There is one difference between a class definition and a namespace definition: The namespace is

concluded with a closing brace but no terminating semicolon.

Example:

namespace A

{

int m;

void display(int n)

{

cout<<n;

}

}

using namespace A;

m=100; //OK

display(200); //OK

using namespace A::m;

m=100; //OK

display(200); // NOT OK, display is not visible

In general, to access a member of a namespace from outside its namespace, precede the member's

name with the name of the namespace followed by the scope resolution operator.

Here is a program that demonstrates the use of CounterNameSpace.

// Demonstrate a namespace.

#include <iostream.h>

namespace CounterNameSpace

 {

int upperbound;

int lowerbound;

class counter

{

int count;

public:

counter(int n)

{

if(n <= upperbound) count = n;

else count = upperbound;

}

,by - Topperworld

113 C++

void reset(int n)

{

if(n <= upperbound) count = n;

}

int run()

{

if(count > lowerbound) return count--;

else return lowerbound;

}

};

}

void main()

{

CounterNameSpace::upperbound = 100;

CounterNameSpace::lowerbound = 0;

CounterNameSpace::counter ob1(10);

int i;

do

{

i = ob1.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

CounterNameSpace::counter ob2(20);

do

{

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

cout << endl;

ob2.reset(100);

CounterNameSpace::lowerbound = 90;

Do

 {

i = ob2.run();

cout << i << " ";

} while(i > CounterNameSpace::lowerbound);

}

Notice that the declaration of a counter object and the references to upperbound and lowerbound are

qualified by CounterNameSpace. However, once an object of type counter has been declared, it is not

necessary to further qualify it or any of its members. Thus, ob1.run() can be called directly; the

namespace has already been resolved.

,by - Topperworld

114 C++

using

As you can imagine, if your program includes frequent references to the members of a namespace,

having to specify the namespace and the scope resolution operator each time you need to refer to one

quickly becomes a tedious chore. The using statement was invented to alleviate this problem. The

using statement has these two general forms:

using namespace name;

using name::member;

In the first form, name specifies the name of the namespace you want to access. All of the members

defined within the specified namespace are brought into view (i.e., they become part of the current

namespace) and may be used without qualification. In the second form, only a specific member of the

namespace is made visible. For example, assuming CounterNameSpace as shown above, the following

using statements and assignments are valid.

using CounterNameSpace::lowerbound; // only lowerbound is visible

lowerbound = 10; // OK because lowerbound is visible

using namespace CounterNameSpace; // all members are visible

upperbound = 100; // OK because all members are now visible

Unnamed Namespaces

There is a special type of namespace, called an unnamed namespace that allows you to create

identifiers that are unique within a file. Unnamed namespaces are also called anonymous namespaces.

They have this general form:

namespace

{

// declarations

}

Unnamed namespaces allow you to establish unique identifiers that are known only within the scope of

a single file. That is, within the file that contains the unnamed namespace, the members of that

namespace may be used directly, without qualification. But outside the file, the identifiers are

unknown. Unnamed namespaces eliminate the need for certain uses of the static storage class

modifier.

For example, consider the following two files that are part of the same program.

File One

static int k;

void f1() {

k = 99; // OK

}

File Two

extern int k;

void f2() {

k = 10; // error

}

,by - Topperworld

115 C++

Because k is defined in File One, it may be used in File One. In File Two, k is specified as extern, which

means that its name and type are known but that k itself is not actually defined. When these two files

are linked, the attempt to use k within File Two results in an error because there is no definition for k. By

preceding k with static in File One, its scope is restricted to that file and it is not available to File Two.

While the use of static global declarations is still allowed in C++, a better way to accomplish the same

effect is to use an unnamed namespace. For example:

File One

namespace

 {

int k;

}

void f1()

{

k = 99; // OK

}

File Two

extern int k;

void f2()

 {

k = 10; // error

}

Here, k is also restricted to File One. The use of the unnamed namespace rather than static is

recommended for new code.

Some Namespace Options

There may be more than one namespace declaration of the same name. This allows a namespace to be

split over several files or even separated within the same file.

For example:

#include <iostream.h>

namespace NS

 {

int i;

}

namespace NS

{

int j;

}

void main()

{

NS::i = NS::j = 10;

// refer to NS specifically

,by - Topperworld

116 C++

cout << NS::i * NS::j << "\n";

// use NS namespace

using namespace NS;

cout << i * j;

return 0;

}

Output:

100

100

Here, NS is split into two pieces. However, the contents of each piece are still within the same

namespace, that is, NS.

The std Namespace

Standard C++ defines its entire library in its own namespace called std. This is the reason that most of

the programs in this book include the following statement:

using namespace std;

This causes the std namespace to be brought into the current namespace, which gives you direct access

to the names of the functions and classes defined within the library without having to qualify each one

with std::. Of course, you can explicitly qualify each name with std:: if you like. For example, the

following program does not bring the library into the global namespace.

// Use explicit std:: qualification.

#include <iostream>

void main()

{

int val;

std::cout << "Enter a number: ";

std::cin >> val;

std::cout << "This is your number: ";

std::cout << std::hex << val;

}

Here, cout, cin, and the manipulator hex are explicitly qualified by their namespace. That is, to write to

standard output, you must specify std::cout; to read from standard input, you must use std::cin; and

the hex manipulator must be referred to as std::hex.

,by - Topperworld

117 C++

Creating Conversion Functions

In some situations, you will want to use an object of a class in an expression involving other types of

data. Sometimes, overloaded operator functions can provide the means of doing this. However, in

other cases, what you want is a simple type conversion from the class type to the target type. To handle

these cases, C++ allows you to create custom conversion functions. A conversion function converts your

class into a type compatible with that of the rest of the expression. The general format of a type

conversion function is:

operator type() { return value; }

Here, type is the target type that you are converting your class to, and value is the value of the class

after conversion. Conversion functions return data of type type, and no other return type specifier is

allowed. Also, no parameters may be included. A conversion function must be a member of the class for

which it is defined. Conversion functions are inherited and they may be virtual.

#include <iostream.h>

const int SIZE=100;

class stack

{

int stck[SIZE];

int tos;

public:

stack() { tos=0; }

void push(int i);

int pop(void);

operator int() { return tos; } // conversion of stack to int

};

void stack::push(int i)

{

if(tos==SIZE)

{

cout << "Stack is full.\n";

return;

}

stck[tos] = i;

tos++;

}

int stack::pop()

{

if(tos==0)

 {

cout << "Stack underflow.\n";

return 0;

}

,by - Topperworld

118 C++

tos--;

return stck[tos];

}

void main()

{

stack stck;

int i, j;

for(i=0; i<20; i++) stck.push(i);

j = stck; // convert to integer

cout << j << " items on stack.\n";

cout << SIZE - stck << " spaces open.\n";

}

Output:

20 items on stack.

80 spaces open.

As the program illustrates, when a stack object is used in an integer expression, such as j = stck, the

conversion function is applied to the object. In this specific case, the conversion function returns the

value 20. Also, when stck is subtracted from SIZE, the conversion function is also called.

,by - Topperworld

