Roll No.

Total Pages : 04

BCA/M-20
 1889
 MATHEMATICAL FOUNDATION-II
 BCA-123

Time : Three Hours]
[Maximum Marks : 80

Note : Attempt Five questions in all. Q. No. $\mathbf{1}$ is compulsory. Attempt four more questions selecting exactly one question from each Unit. All questions carry equal marks.

(Compulsory Question)

1. Explain the following :
(a) Logical statement
(b) Universal quantifer
(c) Binary operation
(d) Isomorphism of a ring
(e) Matrix
(f) Row echelon matrix
(g) Characteristic equation
(h) Hermitian matrix.
$8 \times 2=16$
(3)L-1889

1

Unit I

2. (a) If p and q be any statements, then construct the truth table of $\sim p \wedge q$ and $(p \rightarrow q) \rightarrow(p \wedge q) .8$
(b) By using laws of algebra of logical statements, prove that $\sim(p \vee q) \vee(\sim p \wedge q) \equiv \sim p$ and $(p \vee q) \wedge \sim p \equiv \sim p \wedge q$.
3. (a) Prove by the principle of mathematical induction that the sum of first n natural numbers $=n(n+1) / 2$ i.e., $1+2+3+\ldots \ldots \ldots . .+n=n(n+1) / 2$, for all $n \in \mathrm{~N}$. 8
(b) Using principle of mathematical induction, prove that for all $n \varepsilon \mathrm{~N},(2 n+7)<(n+3)^{2}$.

8

Unit II

4. (a) Show that I (that set of all integers) is an abelian group w.r.t. addition.
(b) Prove that group G is abelian iff $(a b)^{2}=a^{2} b^{2}$ for all $a, b \varepsilon \mathrm{G}$.
5. (a) Prove that the set of all $n^{*} n$ matrices form a ring with identity but it is not commutative ring with respect to matrix addition and multiplication. 8
(b) Prove that the intersection of two subrings in a ring.

Unit III

6. (a) If $\mathrm{B}=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & -1 & 5\end{array}\right], \mathrm{C}=\left[\begin{array}{ccc}1 & -2 & 3 \\ -1 & 0 & 2\end{array}\right] ; \quad$ find $3 B+4 C$.

8
(b) Without using the concept of inverse of matrix, find the matrix $\left[\begin{array}{ll}x & y \\ z & u\end{array}\right]$ such that $\left[\begin{array}{cc}5 & -7 \\ -2 & 3\end{array}\right]\left[\begin{array}{ll}x & y \\ z & u\end{array}\right]=\left[\begin{array}{cc}-16 & -6 \\ 7 & 2\end{array}\right]$.
7. (a) Find the rank of the matrix $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1 \\ 1 & 1 & 1\end{array}\right]$.
(b) Solve the following system of homogeneous equations:

$$
\begin{array}{r}
3 x+2 y+7 z=0 \\
4 x-3 y-2 z=0 \\
5 x+9 y+23 z=0
\end{array}
$$

Unit IV

8. (a) Find the characteristic roots and spectrum of matrix,

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right] .
$$

(b) If α is an eigen value of a non-singular matrix A , then prove that $\frac{|A|}{\alpha}$ is an eigen value of adj. A. 8
9. State and prove Cayley-Hamilton theorem and verify

Cayley-Hamilton theorem for the matrix $\mathrm{A}=\left[\begin{array}{ccc}1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 1 & 0\end{array}\right]$.

