Topperworld.in

Operator Overloading in C++

Operator overloading is giving new functionality to an existing operator. It
means the behavior of operators when applied to objects of a class can be
redefined. It is similar to overloading functions except the function name is
replaced by the keyword operator followed by the operator’s symbol. There are
5 operators that are forbidden to overload. They are :: . .* sizeof ?:

In the following code fragment, we will overload binary + operator for Complex
number class object.

#include <iostream>
using namespace std;

class Complex
{
private
double real;
double imag;
public:
Complex () {};
Complex (double, double);
Complex operator + (Complex):;
void print();

¥

Complex: :Complex (double r, double i)
{

real = r;

imag = 1i;

}

Complex Complex::operator+ (Complex param)
{
Complex temp;
temp.real = real + param.real;
temp.imag = imag + param.imag;
return (temp);

}

void Complex::print ()

{
cout << real << " + 1" << imag << endl;

}


http://Topperworld.in/

main ()

Complex cl (3.1, 1
Complex c2 (1.2, 2.
Complex c3;

c3 =cl + c2;

cl.print (),
c2.print () ;
c3.print ()
return O;

Output :
3.1 +il1l.5
1.2 +i2.2
4.3 +i3.7

In C++ we can cause an operator to invoke a member function by giving that
member function a special name (of the form: operator<symbol>). Hence for
the sum operation, the special name is: operator+. So, by haming the member
function operator+ we can call the function by statement

c3 =cl + c2

That is similiar to

c3 = cl.operator+(c2);



