
Topperworld.in

Operator Overloading in C++

Operator overloading is giving new functionality to an existing operator. It

means the behavior of operators when applied to objects of a class can be

redefined. It is similar to overloading functions except the function name is

replaced by the keyword operator followed by the operator’s symbol. There are

5 operators that are forbidden to overload. They are :: . .* sizeof ?:

In the following code fragment, we will overload binary + operator for Complex

number class object.

#include <iostream>

using namespace std;

class Complex

{

 private :

 double real;

 double imag;

 public:

 Complex () {};

 Complex (double, double);

 Complex operator + (Complex);

 void print();

};

Complex::Complex (double r, double i)

{

 real = r;

 imag = i;

}

Complex Complex::operator+ (Complex param)

{

 Complex temp;

 temp.real = real + param.real;

 temp.imag = imag + param.imag;

 return (temp);

}

void Complex::print()

{

 cout << real << " + i" << imag << endl;

}

http://Topperworld.in/

int main ()

{

 Complex c1 (3.1, 1.5);

 Complex c2 (1.2, 2.2);

 Complex c3;

 c3 = c1 + c2; //use overloaded + operator

 c1.print();

 c2.print();

 c3.print();

 return 0;

}

Output :

3.1 + i1.5

1.2 + i2.2

4.3 + i3.7

In C++ we can cause an operator to invoke a member function by giving that

member function a special name (of the form: operator<symbol>). Hence for

the sum operation, the special name is: operator+. So, by naming the member

function operator+ we can call the function by statement

c3 = c1 + c2

That is similiar to

c3 = c1.operator+(c2);

