
Topperworld.in

Pointer

Accessing address of a variable

Computer‟s memory is organized as a linear collection of bytes. Every byte in

the computer‟s memory has an address. Each variable in program is stored at a

unique address. We can use address operator & to get address of a variable:

 int num = 23;

 cout << # // prints address in hexadecimal

POINTER

A pointer is a variable that holds a memory address, usually the location of

another variable in memory.

Defining a Pointer Variable

 int *iptr;

iptr can hold the address of an int

Pointer Variables Assignment:

 int num = 25;

 int *iptr;

 iptr = #

Memory layout

To access num using iptr and indirection operator *

 cout << iptr; // prints 0x4a00

 cout << *itptr; // prints 25

Similary, following declaration shows:

char *cptr;

float *fptr;

cptr is a pointer to character and fptr is a pointer to float value.

http://Topperworld.in/

Pointer Arithmetic

Some arithmetic operators can be used with pointers:

 - Increment and decrement operators ++, --

 - Integers can be added to or subtracted from

 pointers using the operators +, -, +=, and -=

Each time a pointer is incremented by 1, it points to the memory location of the

next element of its base type.

If “p” is a character pointer then “p++” will increment “p” by 1 byte.

If “p” were an integer pointer its value on “p++” would be incremented by 4

bytes.

Pointers and Arrays

Array name is base address of array

 int vals[] = {4, 7, 11};

 cout << vals; // displays 0x4a00

 cout << vals[0]; // displays 4

Lets takes an example:

int arr[]={4,7,11};

int *ptr = arr;

What is ptr + 1?

It means (address in ptr) + (1 * size of an int)

cout << *(ptr+1); // displays 7

cout << *(ptr+2); // displays 11

Array Access

Array notation arr[i] is equivalent to the pointer notation *(arr + i)

Assume the variable definitions

 int arr[]={4,7,11};

 int *ptr = arr;

Examples of use of ++ and --

 ptr++; // points at 7

 ptr--; // now points at 4

Character Pointers and Strings

Initialize to a character string.

char* a = “Hello”;

a is pointer to the memory location where „H‟ is stored. Here “a” can be viewed

as a character array of size 6, the only difference being that a can be reassigned

another memory location.

 char* a = “Hello”;

 a gives address of „H‟

*a gives „H‟

a[0] gives „H‟

a++ gives address of „e‟

*a++ gives „e‟

Pointers as Function Parameters

A pointer can be a parameter. It works like a reference parameter to allow

change to argument from within function

#include<iostream>

using namespace std;

void swap(int *, int *);

int main()

{

 int a=10,b=20;

 swap(&a, &b);

 cout<<a<<" "<<b;

 return 0;

}

void swap(int *x, int *y)

{

 int t;

 t=*x;

 *x=*y;

 *y=t;

}

output:
20 10

Pointers to Constants and Constant Pointers

Pointer to a constant: cannot change the value that is pointed at

Constant pointer: address in pointer cannot change once pointer is initialized

Pointers to Structures

We can create pointers to structure variables

 struct Student {int rollno; float fees;};

 Student stu1;

 Student *stuPtr = &stu1;

 (*stuPtr).rollno= 104;

-or-

Use the form ptr->member:

 stuPtr->rollno = 104;

Static allocation of memory

In the static memory allocation, the amount of memory to be allocated is

predicted and preknown. This memory is allocated during the compilation itself.

All the declared variables declared normally, are allocated memory statically.

Dynamic allocation of memory

In the dynamic memory allocation, the amount of memory to be allocated is not

known. This memory is allocated during run-time as and when required. The

memory is dynamically allocated using new operator.

Free store

Free store is a pool of unallocated heap memory given to a program that is used

by the program for dynamic allocation during execution.

Dynamic Memory Allocation

We can allocate storage for a variable while program is running by using new

operator

To allocate memory of type integer

int *iptr=new int;

To allocate array

double *dptr = new double[25];

To allocate dynamic structure variables or objects

Student sptr = new Student; //Student is tag name of structure

Releasing Dynamic Memory

Use delete to free dynamic memory

delete iptr;

To free dynamic array memory

delete [] dptr;

To free dynamic structure

delete Student;

Memory Leak

If the objects, that are allocated memory dynamically, are not deleted using

delete, the memory block remains occupied even at the end of the program.

Such memory blocks are known as orphaned memory blocks. These orphaned

memory blocks when increase in number, bring adverse effect on the system.

This situation is called memory leak

Self Referential Structure

The self referential structures are structures that include an element that is a

pointer to another structure of the same type.

struct node

{

 int data;

 node* next;

}

