BT-4/J-21

DISCRETE MATHEMATICS

Paper-PC-CS-202A

Time : Three Hours]
[Maximum Marks : 75
Note : Attempt five questions in all, selecting at least one question from each unit.

UNIT-I

1. (a) Show that
$1^{2}+3^{2}+5^{2}+\ldots \ldots \ldots \ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
by mathematical induction.
(b) Given that
$(\mathrm{A} \cap \mathrm{C}) \subseteq(\mathrm{B} \cap \mathrm{C})$
$(\mathrm{A} \cap \overline{\mathrm{C}}) \subseteq(\mathrm{B} \cap \overline{\mathrm{C}})$
show that $\mathrm{A} \subseteq \mathrm{B}$.
TOPPERWorld
2. (a) Construct the truth tables for the following statements
(i) $\quad(p \rightarrow p) \rightarrow(p \rightarrow \bar{p})$.
(ii) $(p \vee \bar{q}) \rightarrow \bar{p}$.
(iii) $p \leftrightarrow(\bar{p} \vee \bar{q})$.
(b) Let A, B and C be sets such that $(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=\phi$, $(A \cap B) \neq \phi,(A \cap C) \neq \phi$ and $(B \cap C) \neq \phi$. Draw the corresponding Venn diagram.

UNIT-II

3. (a) Find all the partitions of $\mathrm{B}=\{a, b, c, d\}$.
(b) Let $\mathrm{A}=\{a, b\}$ and $\mathrm{B}=\{4,5,6\}$. Given each of the following :
(i) $\mathrm{A} \times \mathrm{B}$
(ii) $\mathrm{B} \times \mathrm{A}$
(iii) $\mathrm{A} \times \mathrm{A}$
(iv) $\mathrm{B} \times \mathrm{B}$.
4. (a) Show that if R_{1} and R_{2} are equivalence relations on A, then $R_{1} \cap R_{2}$ is an equivalence relation on A.
(b) Let $\mathrm{A}=\mathrm{Z}$, the set of integers and let R is defined by $a \mathrm{R} b$ if and only if $a \leq b$. Is R is an equivalence relation?

UNIT-III

5. (a) Prove that if $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ are one-to-one functions, then $g o f$ is one-to-one.
(b) Let $\mathrm{A}=\mathrm{B}=\mathrm{C}=\mathrm{R}$, and let $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{B} \rightarrow \mathrm{C}$ be defined by $f(a)=a-1$ and $g(b)=b^{2}$ find :
(i) $(f o g)(2)$
(ii) (gof) (2)
(iii) $(f o f)(y)$
(iv) $(\operatorname{gog})(y)$.
6. (a) Let A and B be two finite set with same number of elements, and let $f: \mathrm{A} \rightarrow \mathrm{B}$ be an everywhere defined functions :
(i) If f is one-to-one, then f is onto.
(ii) If f is onto, then f is one-to-one.
(b) If n pigeons are assigned to m pigeonholes, and $m<n$, then atleast one pigeonhole contains two or more pigeons.

UNIT-IV

7. (a) Define the following :
(i) Group.
(ii) Cyclic group.
(b) Let H and K be subgroups of group G :
(i) Prove that $\mathrm{H} \cap \mathrm{K}$ is subgroup of G .
(ii) Show that $\mathrm{H} \cup \mathrm{K}$ need not be subgroup of G .
8. (a) Let G be an Abelian group and n is a fixed integer. Prove that the function $f: \mathrm{G} \rightarrow \mathrm{G}$ defined by $f(a)=a^{n}$, for $a \in \mathrm{G}$ is a homomorphism.
(b) Let G be a group, and let $\mathrm{H}=\{x / x \in \mathrm{G}$ and $a x=x a$ for all $a \in \mathrm{G}\}$. Show that H is a normal subgroup of G .
