Roll No.

Total Pages: 3

BT-4/J-21

44151

DISCRETE MATHEMATICS Paper-PC-CS-202A

Time: Three Hours] [Maximum Marks: 75

Note: Attempt *five* questions in all, selecting at least *one* question from each unit.

UNIT-I

- 1. (a) Show that $1^2 + 3^2 + 5^2 + \dots + (2n-1)^2 = \frac{n(2n-1)(2n+1)}{3}$ by mathematical induction.
 - (b) Given that

$$(A \cap C) \subseteq (B \cap C)$$

$$(A \cap \overline{C}) \subseteq (B \cap \overline{C})$$

show that $A \subseteq B$. TopperWorld

- **2.** (a) Construct the truth tables for the following statements
 - (i) $(p \to p) \to (p \to \overline{p})$.
 - (ii) $(p \vee \overline{q}) \rightarrow \overline{p}$.
 - (iii) $p \leftrightarrow (\overline{p} \vee \overline{q})$.
 - (b) Let A, B and C be sets such that $(A \cap B \cap C) = \phi$, $(A \cap B) \neq \phi$, $(A \cap C) \neq \phi$ and $(B \cap C) \neq \phi$. Draw the corresponding Venn diagram.

UNIT-II

- **3.** (a) Find all the partitions of $B = \{a, b, c, d\}$.
 - (b) Let $A = \{a, b\}$ and $B = \{4, 5, 6\}$. Given each of the following:
 - (i) $A \times B$
 - (ii) $B \times A$
 - (iii) $A \times A$
 - (iv) $B \times B$.
- **4.** (a) Show that if R_1 and R_2 are equivalence relations on A, then $R_1 \cap R_2$ is an equivalence relation on A.
 - (b) Let A = Z, the set of integers and let R is defined by a R b if and only if $a \le b$. Is R is an equivalence relation?

UNIT-III

- 5. (a) Prove that if $f: A \to B$ and $g: B \to C$ are one-to-one functions, then gof is one-to-one.
 - (b) Let A = B = C = R, and let $f : A \to B$ and $g : B \to C$ be defined by f(a) = a 1 and $g(b) = b^2$ find :
 - (i) (fog) (2)
 - (ii) (gof) (2)
 - (iii) (fof) (y)
 - (iv) (gog) (y).

- **6.** (a) Let A and B be two finite set with same number of elements, and let $f: A \to B$ be an everywhere defined functions:
 - (i) If f is one-to-one, then f is onto.
 - (ii) If f is onto, then f is one-to-one.
 - (b) If n pigeons are assigned to m pigeonholes, and m < n, then atleast one pigeonhole contains two or more pigeons.

UNIT-IV

- 7. (a) Define the following:
 - (i) Group.
 - (ii) Cyclic group.
 - (b) Let H and K be subgroups of group G:
 - (i) Prove that $H \cap K$ is subgroup of G.
 - (ii) Show that $H \cup K$ need not be subgroup of G.
- **8.** (a) Let G be an Abelian group and n is a fixed integer. Prove that the function $f: G \to G$ defined by $f(a) = a^n$, for $a \in G$ is a homomorphism.
 - (b) Let G be a group, and let $H = \{x/x \in G \text{ and } ax = xa \text{ for all } a \in G\}$. Show that H is a normal subgroup of G.