Roll No.
Sub Code: RCS403
Paper Id: \square

B TECH

(SEM-IV) THEORY EXAMINATION 2018-19 THEORY OF AUTOMATA AND FORMAL LANGUAGES

Time: 3 Hours

Total Marks: 70
Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a. For the given language $\mathrm{L}_{1}=\varepsilon, \mathrm{L}_{2}=\{\mathrm{a}\}, \mathrm{L}_{3}=\emptyset$. Compute $\mathrm{L}_{1} \mathrm{~L}_{2}{ }^{*} \mathrm{UL}_{3}{ }^{*}$.
b. Design a FA to accept the string that always ends with 101.
c. Write regular expression for set of all strings such that number of a's divisible by 3 over $\Sigma=\{\mathrm{a}, \mathrm{b}\}$
d. Construct the CFG for the Language $L=\left\{a^{2 n} b^{n} \mid n>=3\right\}$.
e. What do you mean by ε-Closure in FA?
f. Explain Universal TM.
g. Explain Two Stack PDA.

SECTION B

2. Attempt any three of the following:
a. Construct a minimum state DFA from given FA

Fig. 1
b. Find the regular expression corresponding to the finite automata given bellow:

Fig. 2
P.T.O
c. Convert the following CFG to its equivalent GNF: $\mathrm{S} \rightarrow \mathrm{AA}|\mathrm{a}, \mathrm{A} \rightarrow \mathrm{SS}| \mathrm{b}$.
d. Design a PDA for the following language:
$L=\left\{a^{i} b^{j} c^{k} \mid i=j\right.$ or $\left.j=k\right\}$
e. Design a TM for the following language:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}+2} \mathrm{~b}^{\mathrm{n}} \mid \mathrm{n}>0\right\}$

SECTION C

3. Attempt any one part of the following:
(a) Design FA for ternary number divisible by 5 .
(b) Explain Myhill-Nerode Theorem using suitable example.
4. Attempt any one part of the following:
(a) Prove that the following Language $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}}\right\}$ is not regular
(b) Explain the Closure properties of regular expression.
5. Attempt any one part of the following:
$7 \times 1=7$
(a) Design the CFG for the following language:
i) $\mathrm{L}=\left\{0^{\mathrm{m}} 1^{\mathrm{n}} \mid \mathrm{m} \neq \mathrm{n} \& \mathrm{~m}, \mathrm{n} \geq 1\right\}$
ii) $\mathrm{L}=\left\{\mathrm{a}^{\left.\mathrm{l} \mathrm{b}^{\mathrm{m}} \mathrm{c}^{\mathrm{n}} \mid 1+\mathrm{m}=\mathrm{n} \& \mathrm{l}, \mathrm{m} \geq 1\right\}, ~}\right.$
(b) Prove that the following Language $L=\left\{a^{n} b^{n} c^{n}\right\}$ is not Context Free.
6. Attempt any one part of the following:
(a) Design a PDA for the Language $\mathrm{L}=\left\{\mathrm{WW}^{\mathrm{R}} \mid \mathrm{W}=\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
(b) Generate CFG for the given PDA M is defined as
$\mathrm{M}=\left(\left\{\mathrm{q}_{0}, \mathrm{q}_{1}\right\},\{0,1\}\left\{\mathrm{x}, \mathrm{z}_{0}\right\}, \delta, \mathrm{q}_{0}, \mathrm{z}_{0}, \mathrm{q}_{1}\right)$ where δ is given as follows:
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{z}_{\mathrm{o}}\right)=\left(\mathrm{q}_{0}, \mathrm{xzo}\right)$
$\delta\left(\mathrm{q}_{0}, 1, \mathrm{x}\right)=\left(\mathrm{q}_{0}, \mathrm{xx}\right)$
$\delta\left(\mathrm{q}_{0}, 0, \mathrm{x}\right)=\left(\mathrm{q}_{0}, \mathrm{x}\right)$
$\delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
$\delta\left(\mathrm{q}_{1}, 0, \mathrm{x}\right)=\left(\mathrm{q}_{1}, \mathrm{xx}\right)$
$\delta\left(\mathrm{q}_{1}, 0, \mathrm{zo}\right)=\left(\mathrm{q}_{1}, \varepsilon\right)$
7. Attempt any one part of the following:
$7 \times 1=7$
(a) Design a TM for the following language:
$\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{\mathrm{n}} \mathrm{c}^{\mathrm{n}} \mid \mathrm{n} \geq 1\right\}$
(b) Write short note on:
i) Recursive Language and Recursively Enumerable Language.
ii) PCP problem and Modified PCP Problem
