|          | Sub Coue. 11C5402/C5404/EC5404 |  |  |  |  |  |  |  |  |  |
|----------|--------------------------------|--|--|--|--|--|--|--|--|--|
| Roll No. |                                |  |  |  |  |  |  |  |  |  |
|          |                                |  |  |  |  |  |  |  |  |  |

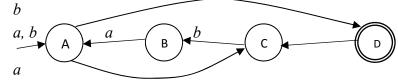
Sub Code: NCS402/CS404/FCS403

## (SEM IV) THEORY EXAMINATION 2017-18 THEORY OF AUTOMATA & FORMAL LANGUAGES

## Time: 3 Hours

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

## SECTION A


## 1. Attempt *all* questions in brief.

- a. Explain the applications and limitations of finite automata.
- b. Explain what modifications will be required to transform a Finite Automata model into Turing machine.
- c. What is MyHillNerode theorem? Explain.
- d. What is extended transition function  $\delta^*$ ? Explain with example.
- e. Give the difference between Mealy and Moore machine.
- f. Define and give the difference between positive closure and Kleene closure.
- g. What in nondeterministic PDA? Explain with the help of transition function.
- h. Give the regular expression for set of all strings over  $\{0,1\}$  containing exactly three 0's.
- i. Prove or disprove that union and concatenation of two context free languages is also context free.
- j. Explain recursively enumerable languages with example.



## 2. Attempt any *three* of the following:

- a. Explain the purpose of following FA:  $\delta(q_1, a) = q_1, q_2, \quad \delta(q_1, b) = q_3, \quad \delta(q_2, a) = q_3, q_2$  $q_1$  is initial state and  $F = \{q_2, q_3\}$
- b. Let the language of FA given below be *L*. Determine the FA accepting *L* (*i.e.* Complemented language).



- c. Prove that for all sets (i)  $(S^+)^+ = S^+$ , (ii)  $(S^+)^* = S^*$
- d. Prove that the language  $L = \{a^n b^n c^n | n \ge 0\}$  is neither regular nor context free.
- e. Explain Church's Thesis and prove that Halting problem of Turing machine is undecidable.

Total Marks: 100

 $2 \ge 10 = 20$ 

 $10 \ge 3 = 30$ 

### SECTION C

#### 3. Attempt any one part of the following:

- Give finite automata for: (a)
  - i)  $L = \{a^n b^{2m} c^{3l} \mid n, m, l \ge 0\}.$
  - ii)  $L = \{a^n b^{2m} \mid 0 \le n \le 3, m \ge 0\}.$
- Design DFA to accept all string over  $\{0, 1\}$  not ending with 10. (b)

#### Attempt any one part of the following: 4.

- Determine the language generated by grammar (a)  $S \rightarrow Sab \mid aSb \mid abS \mid baS \mid bSa \mid Sba \mid aS \mid a$
- What is inherent ambiguity? Explain with the help of suitable example. (b)

#### 5. Attempt any one part of the following:

- Determine the grammar for language  $L = \{a^n b^m | n \ge m\}$ . Also explain the type (a) of this language.
- Construct context free grammar G corresponding to following context free (b) language, then construct PDA corresponding to G $L = \{ 0^n 1^{2n} | n \ge 1 \}$

#### Attempt any one part of the following: 6.

- Design PDA for language: (a)  $L = \{s \in (0, 1)^* | \text{number of } 0\text{'s and } 1\text{'s are not equal in every string of } s\}.$
- (b) Construct a Turing machine to accept the language  $L = \{a^n b^n c^m | m, n \ge 0\}$ .

### Attempt any one part of the following: 7.

- Explain variations in Turing machine to make it more capable. How Universal (a) Turing machine can be considered as model of digital computer?
- Explain Modified Post Corresponding Problem. Does the following Post (b) Corresponding Problem have a solution?

A = (101, 100, 10, 0, 010), B = (10, 01, 0, 100, 1)

 $10 \ge 1 = 10$ 

## $10 \ge 1 = 10$

 $10 \ge 1 = 10$ 

# $10 \ge 1 = 10$

## $10 \ge 1 = 10$