Printed Page: 1 of 2 Subject Code: KAS103

Roll No:

BTECH

(SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

Time: 3 Hours

Notes:

Total Marks: 100

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECTION-A	Attempt All of the following Questions in brief Marks(10X2=20)	
$Q^{1(a)}$ Find the function of the function	the eigen value of A^3 where $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$.	1
	that the system of vectors $X_1 = (1, -1, \), X_2 = (2, 1, \), and$ (3, 0, 2) are linearly dependent or linearly independent.	1
Q1(c) If $y =$	$A \sin nx + B \cos nx$, prove that $y_2 + n^2 y = 0$.	2
Q1(d) Find the	the asymptotes parallel to y-axis of the curve $\frac{a^2}{x} + \frac{b^2}{y} = 1$.	2
$Q_1(e)$ If $x =$	= $r\cos\theta$, $y = r\sin\theta$, ind $\frac{\partial(r,\theta)}{\partial(x,y)}$.	3
	or of 2% is made in measuring length and breadth then find the percentage n the area of the rectangle.	3
Q1(g) Evalua	the $\int_0^1 \int_0^{x^2} e^{\frac{y}{x}} dy dx.$	4
Q1(h) Find t	ne volume common to the cylinders $x^2 + y^2 = a^2$ and $x^2 + z^2 = a^2$.	4
	such that $\vec{A} = (px + 4\hat{y}z)i + (x^3\sin z - 3y)j - (e^x + 4\cos x^2y)k$ is	5
Q1(j) State (Green's theorem for a plane region.	5

SECTION-B Attempt ANY THREE of the following Questions Man		
Q2(a)	ION-BAttempt ANY THREE of the following QuestionsMarks(3X10=30)Find the eigen values and corresponding eigen vectors of $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$	1
Q2(b)	Verify Rolle's theorem for the function $f(x) = \sqrt{4 - x^2}$ in [-2, 2].	2
Q2(c)	Find the first six terms of the expansions of the function $e^x \log(1 + y)$ in a Taylor series in the neighborhood of the point $(0, 0)$.	3
Q2(d)	Change the order of integration in $I = \int_0^1 \int_{x^2}^{2-x} xy dy dx$ and hence evaluate the same.	
Q2(e)	If a vector field is given by $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$ Is this field irrotational? If so, find its scalar potential.	5

SECTION-C	Attempt ANY ONE following Question Marks (1X10=1	0)		
Q3(a) Find for v	Find for what values of λ and μ the system of linear inequation: $x + y + z = 6$,			
x + 2y	$x + 2y + 5z = 10, 2x + 3y + \lambda z = \frac{1}{2}a_{x}(i)$ a unique solution, (ii) no solution,			
(iii) infini	te solution. Also find the solution for $\lambda = 2$ and $\mu = 8$.			
Q3(b) Find the r) Find the rank of matrix reducing it to normal form			
	$A = \begin{bmatrix} 1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6 \end{bmatrix}$			
	$_{A} = \begin{bmatrix} 2 & -1 & 3 & 2 \end{bmatrix}$			
	$\begin{bmatrix} 1 & -5 & 2 & 2 \end{bmatrix}$			
	[6 -3 8 6]			

Printed Page: 2 of 2 Subject Code: KAS103

Roll No:

BTECH (SEM I) THEORY EXAMINATION 2021-22 MATHEMATICS-I

	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q4(a)	If $y = (sin^{-1}x)^2$, show that $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$ and calculate $y_n(0)$.			
Q4(b)	Verify mean value theorem for the function $f(x) = x(x-1)(x-2)$ in $\begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$.			2
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
Q5(a)	A rectangular box which is open at the top having capacity 32c.c.Find the dimension of the box such that the least material is required for its constructions.			3
Q5(b)	If u, v and w are the roots of $(\lambda - x)^3 + (\lambda - y)^3 + (\lambda - z)^3 = 0$, cubic in λ , find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$.			3
SECT	ION-C	Attempt ANY ONE following Question	Marks (1X10=10)	
	(a) Find by double integration the area enclosed by the pair of curves $y = 2 - x$ and $^{2}y = 2(2 - x)$			4
Q6(b)	Find C.G.	of the area in the positive quadrant of the curve $x^{\frac{2}{3}}$ -	$+ y^{\frac{2}{3}} = a^{\frac{2}{3}}.$	4
SECT	SECTION-C Attempt ANY ONE following Question Marks (1X10=10)			
) Find the directional derivative of $f(x, y, z) = xyz$ at the point $P(1, -1, 2)$ in the direction of the vector $(2i - 2j + 2k)$.			5
Q7(b)		bke's Theorem for $\vec{F} = (y - z + 2)i + (yz + 4)j - (yz + 2)i + (yz + 4)j - (yz + 2), y = 0, z = 0, x = 2, y = above=the2XO$		5