Roll No:

\square

BTECH

(SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

Time: 3 Hours
Total Marks: 100
Notes:

- Attempt all Sections and Assume any missing data.
- Appropriate marks are allotted to each question, answer accordingly.

SECT	$\mathrm{N}-\mathrm{A}$	Attempt All of the following Questions in brief	Marks(10X	
Q1(a)	Find the eigen value of A^{3} where $\mathrm{A}=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$.			1
Q1(b)	Show that the system of vectors $X_{1}=(1,-1,1), X_{2}=(2,1,1)$, and $X_{3}=(3,0,2)$ are linearly dependent or linearly independent.			
Q1(c)	If $y=A \sin n x+B \cos n x$, prove that $y_{2}+n^{2} y=0$.			2
Q1(d)	Find the asymptotes parallel to y -axis of the curve $\frac{a^{2}}{x}+\frac{b^{2}}{y}=1$.			
Q1(e)	If $x=r \cos \theta, y=r \sin \theta f$,ind $\frac{\partial(r, \theta)}{\partial(x, y)}$.			3
Q1(f)	An error of 2% is made in measuring length and breadth then find the percentage error in the area of the rectangle.			3
Q1(g)	Evaluate $\int_{0}^{1} \int_{0}^{x^{2}} e^{\frac{y}{x}} d y d x$			
Q1(h)	Find the volume common to the cylinders $x^{2}+y^{2}=a^{2}$ and $x^{2}+z^{2}=a^{2}$.			4
Q1(i)	Find p such that $\vec{A}=\left(p x+4 y^{2} z\right) i+\left(x^{3} \sin z-3 y\right) j-\left(e^{x}+4 \cos x^{2} y\right) k$ is solenoidal.			5
Q1(j)	State Green's theorem for a plane region.			5

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)		
Q3(a)	Find for what values of λ and μ the system of linear inequation: $x+y+z=6$, $x+2 y+5 z=10,2 x+3 y+\lambda z ~ m a q(i) ~ a ~ u n i q u e ~ s o l u t i o n, ~(i i) ~ n o ~ s o l u t i o n, ~$	1
(iii) infinite solution. Also find the solution for $\lambda=2$ and $\mu=8$.		
Q3(b)	Find the rank of matrix reducing it to normal form	
$\qquad A=\left[\begin{array}{cccc}1 & 3 & 4 & 2 \\ 2 & -1 & 3 & 2 \\ 3 & -5 & 2 & 2 \\ 6 & -3 & 8 & 6\end{array}\right]$		

Roll No: \square

BTECH

(SEM I) THEORY EXAMINATION 2021-22

MATHEMATICS-I

| SECTION-C Attempt ANY ONE following Question Marks (1X10=10) |
| :--- | :--- | :---: |
| Q4(a) If $y=\left(\sin ^{-1} x\right)^{2}$, show that
 $\left(1-x^{2}\right) y_{n+2}-(2 n+1) x y_{n+1}-n^{2} y_{n}=0$ and calculate $y_{n}(0)$. 2
 Q4(b) Verify mean value theorem for the function $f(x)=x(x-1)(x-2)$ in $\left[0, \frac{1}{2}\right]$. 2 |

SECTION-C Attempt ANY ONE following Question Marks (1X10=10)		
Q5(a)	A rectangular box which is open at the top having capacity 32c.c.Find the dimension of the box such that the least material is required for its constructions.	3
Q5(b)	l u, v and w are the roots of $(\lambda-x)^{3}+(\lambda-y)^{3}+(\lambda-z)^{3}=0$, cubic in λ, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.	3

SECTION-C Attempt ANY ONE following Question \quad Marks $(\mathbf{1 X 1 0}=\mathbf{1 0})$		
Q6(a)	ind by double integration the area enclosed by the pair of curves $y=2-x$ and $\quad y=2(2-x)$	4
Q6(b)	Find C.G. of the area in the positive quadrant of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$.	4

SEC	ON-C	Attempt ANY ONE following Question	(1X10=10)	
Q7(a)	Find the directional derivative of $f(x, y, z)=x y z$ at the point $P(1,-1,2)$ in the direction of the vector $(2 i-2 j+2 h)$.			
Q7(b)	Verify of cube	ke's Theorem for $\vec{F}=(y-z+2) i$ $=0, y=0, z=0, x=2, y$	ver the surface e.	5

