BT-3/D-20 43158
 DIGITAL ELECTRONICS AND LOGIC DESIGN ES-217A

Time : Three Hours]
[Maximum Marks : 75

Note : All questions in Part A and Part B are compulsory. Attempt any four questions from Part C selecting one question from each Unit.

Part A

1. Answer the following questions : $5 \times 3=15$
(i) State and explain De Morgan's theorem. Explain designing of OR gate using NAND gates.
(ii) Express 456 and 272 in BCD code, Excess 3 and Gray code.
(iii) Explain designing of 4 bit gray to binary code converter.
(iv) State the difference between positive edge triggering, negative edge triggering and level triggering of flipflops.
(v) Draw and explain working of sampling and hold circuit.
(3)L-43158
2. Perform the following operations :
(i) $(27)_{2}+(53)_{2}$
(ii) $(34-48)_{2}$ using BCD arithmetic
(iii) Simplify $(\mathrm{A}+\mathrm{B})\left(\mathrm{A}^{\prime}+\mathrm{C}\right)$ to minimum number of literals. Implement the obtained expression using And, OR, Inverter logic.
3. Explain the designing of full adder.
4. Draw a diagram for 5 bit ring counter using JK flip-flop. Explain its working with the help of timing diagram.
5. Draw the diagram of R-2 R ladder D/A Converter. Explain its working.

Unit I

6. Using Q-M method, obtain the minimal expression for $\mathrm{F}=\Sigma m\{2,4,6,7,8,13,15\}+d(10,11,12,14)$. Also realize the expression using NAND gate only. $\mathbf{1 0}$
(3)L-43158
7. Reduce the following expressions using K-Map :
(a) $\mathrm{F}=\Pi \mathrm{M}(1,2,5,6,8,9,10)$
(b) $f=\Sigma(0,1,4,7,13,14)+d(5,8,15)$.

Realise the obtained expressions using NAND/NOR logic.

Unit II

8. (a) State and explain the working of BCD adder with its logic diagram.
(b) Design a octal to binary encoder.
9. What do you mean by multiplexer ? Explain the working of $n: 1$ mux. Implement the function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$ $\Sigma(0,1,3,4,8,9,13)$ using 8×1 mux.

Unit III

10. (a) Explain the working of JK flip-flop. What is race around condition in JK flip-flop ? How can it be solved by master slave flip-flop ?
(b) Design an asynchronous mod-10 counter. Use JK flip-flop for designing the counter. 10
(3)L-43158
11. What do you mean by register ? Draw the logic diagram of universal shift register. Explain its working.

Unit IV

12. Draw and explain the working of dual slope type A / D converter.
13. What is difference between PLA and PAL ? Implement the following Boolean functions using PLA :

$$
\begin{aligned}
& \mathrm{F} 1(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma m(1,2,4,6) . f 2(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma m(0,1,5,7), \\
& f 3(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma m(1,2,3,5,7) .
\end{aligned}
$$

